Running axial mass of the nucleon as a phenomenological tool for calculating quasielastic neutrino–nucleus cross sections
We suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axi...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2021-12, Vol.81 (12), p.1-59, Article 1142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axial-vector mass of the nucleon, governed by a couple of adjustable parameters, one of which is the conventional charged-current axial-vector mass. The inelastic background contributions and final-state interactions are therewith simulated using
GENIE 3
neutrino event generator. An extensive comparison of our calculations with earlier and current accelerator CCQE and CCQE-like data for different nuclear targets shows good or at least qualitative overall agreement over a wide energy range. We also discuss some problematical issues common to several competing contemporary models of the CCQE (anti)neutrino–nucleus scattering and to the current neutrino interaction generators. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-021-09945-5 |