Optimal Control of Mean Field Equations with Monotone Coefficients and Applications in Neuroscience

We are interested in the optimal control problem associated with certain quadratic cost functionals depending on the solution X = X α of the stochastic mean-field type evolution equation in R d d X t = b ( t , X t , L ( X t ) , α t ) d t + σ ( t , X t , L ( X t ) , α t ) d W t , X 0 ∼ μ ( μ given),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2021-12, Vol.84 (Suppl 2), p.1925-1968
Hauptverfasser: Hocquet, Antoine, Vogler, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are interested in the optimal control problem associated with certain quadratic cost functionals depending on the solution X = X α of the stochastic mean-field type evolution equation in R d d X t = b ( t , X t , L ( X t ) , α t ) d t + σ ( t , X t , L ( X t ) , α t ) d W t , X 0 ∼ μ ( μ given), ( 1 ) under assumptions that enclose a system of FitzHugh–Nagumo neuron networks, and where for practical purposes the control α t is deterministic. To do so, we assume that we are given a drift coefficient that satisfies a one-sided Lipschitz condition, and that the dynamics ( 2 ) satisfies an almost sure boundedness property of the form π ( X t ) ≤ 0 . The mathematical treatment we propose follows the lines of the recent monograph of Carmona and Delarue for similar control problems with Lipschitz coefficients. After addressing the existence of minimizers via a martingale approach, we show a maximum principle for ( 2 ), and numerically investigate a gradient algorithm for the approximation of the optimal control.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-021-09816-1