Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions
We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-12, Vol.84 (Suppl 2), p.1477-1504 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1504 |
---|---|
container_issue | Suppl 2 |
container_start_page | 1477 |
container_title | Applied mathematics & optimization |
container_volume | 84 |
creator | Krejčí, Pavel Monteiro, Giselle Antunes Recupero, Vincenzo |
description | We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous. |
doi_str_mv | 10.1007/s00245-021-09801-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614938110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614938110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-50c44ecd4f6210cb2f471eeca5841543ff75c781f137e3e2717b559b5b673eb93</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uz2Y8kx1KqFooK1fOSbGdrSrsbs4m2_95oCt48DQPP-87wEHLN4ZYDpHcRIJGKQcIZ5Blwlp2QEZciYaBBn5IRQK6Y1Fyfk4sYN9DzQosRsbN9va1s1dLCr-h8d1yegmc2-E_c0-UXYl35NX1pgsUYMdLK0_Yd6bIuLNLg6KSMYdu1uD3QafBt5bvQRXrfedtWwcdLcuaKbcSr4xyTt_vZ6_SRLZ4f5tPJgtn-lZYpsFKiXUmnEw62TJxMOaItVCa5ksK5VNk0446LFAUmKU9LpfJSlToVWOZiTG6G3roJHx3G1mxC1_j-pEk0l7nIOIeeSgbKNiHGBp2pm2pXNAfDwfzININM08s0vzJN1ofEEIo97NfY_FX_k_oGEjB3tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614938110</pqid></control><display><type>article</type><title>Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Krejčí, Pavel ; Monteiro, Giselle Antunes ; Recupero, Vincenzo</creator><creatorcontrib>Krejčí, Pavel ; Monteiro, Giselle Antunes ; Recupero, Vincenzo</creatorcontrib><description>We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-021-09801-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Continuity (mathematics) ; Control ; Hilbert space ; Hypotheses ; Mapping ; Mathematical and Computational Physics ; Mathematical functions ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Optimization ; Original Paper ; Simulation ; Smoothness ; Sweeping ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2021-12, Vol.84 (Suppl 2), p.1477-1504</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-50c44ecd4f6210cb2f471eeca5841543ff75c781f137e3e2717b559b5b673eb93</citedby><cites>FETCH-LOGICAL-c363t-50c44ecd4f6210cb2f471eeca5841543ff75c781f137e3e2717b559b5b673eb93</cites><orcidid>0000-0002-4559-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-021-09801-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-021-09801-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krejčí, Pavel</creatorcontrib><creatorcontrib>Monteiro, Giselle Antunes</creatorcontrib><creatorcontrib>Recupero, Vincenzo</creatorcontrib><title>Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous.</description><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Continuity (mathematics)</subject><subject>Control</subject><subject>Hilbert space</subject><subject>Hypotheses</subject><subject>Mapping</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Simulation</subject><subject>Smoothness</subject><subject>Sweeping</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uz2Y8kx1KqFooK1fOSbGdrSrsbs4m2_95oCt48DQPP-87wEHLN4ZYDpHcRIJGKQcIZ5Blwlp2QEZciYaBBn5IRQK6Y1Fyfk4sYN9DzQosRsbN9va1s1dLCr-h8d1yegmc2-E_c0-UXYl35NX1pgsUYMdLK0_Yd6bIuLNLg6KSMYdu1uD3QafBt5bvQRXrfedtWwcdLcuaKbcSr4xyTt_vZ6_SRLZ4f5tPJgtn-lZYpsFKiXUmnEw62TJxMOaItVCa5ksK5VNk0446LFAUmKU9LpfJSlToVWOZiTG6G3roJHx3G1mxC1_j-pEk0l7nIOIeeSgbKNiHGBp2pm2pXNAfDwfzININM08s0vzJN1ofEEIo97NfY_FX_k_oGEjB3tA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Krejčí, Pavel</creator><creator>Monteiro, Giselle Antunes</creator><creator>Recupero, Vincenzo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4559-1102</orcidid></search><sort><creationdate>20211201</creationdate><title>Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions</title><author>Krejčí, Pavel ; Monteiro, Giselle Antunes ; Recupero, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-50c44ecd4f6210cb2f471eeca5841543ff75c781f137e3e2717b559b5b673eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Continuity (mathematics)</topic><topic>Control</topic><topic>Hilbert space</topic><topic>Hypotheses</topic><topic>Mapping</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Simulation</topic><topic>Smoothness</topic><topic>Sweeping</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krejčí, Pavel</creatorcontrib><creatorcontrib>Monteiro, Giselle Antunes</creatorcontrib><creatorcontrib>Recupero, Vincenzo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krejčí, Pavel</au><au>Monteiro, Giselle Antunes</au><au>Recupero, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>84</volume><issue>Suppl 2</issue><spage>1477</spage><epage>1504</epage><pages>1477-1504</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-021-09801-8</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4559-1102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2021-12, Vol.84 (Suppl 2), p.1477-1504 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_2614938110 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Calculus of Variations and Optimal Control Optimization Continuity (mathematics) Control Hilbert space Hypotheses Mapping Mathematical and Computational Physics Mathematical functions Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Optimization Original Paper Simulation Smoothness Sweeping Systems Theory Theoretical |
title | Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20and%20Implicit%20Non-convex%20Sweeping%20Processes%20in%20the%20Space%20of%20Absolutely%20Continuous%20Functions&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Krej%C4%8D%C3%AD,%20Pavel&rft.date=2021-12-01&rft.volume=84&rft.issue=Suppl%202&rft.spage=1477&rft.epage=1504&rft.pages=1477-1504&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-021-09801-8&rft_dat=%3Cproquest_cross%3E2614938110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614938110&rft_id=info:pmid/&rfr_iscdi=true |