Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions
We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-12, Vol.84 (Suppl 2), p.1477-1504 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-021-09801-8 |