Star-forming Dwarf Galaxies in Filamentary Structures around the Virgo Cluster: Probing Chemical Pre-processing in Filament Environments

It has been proposed that the filament environment is closely connected to the pre-processing of galaxies, where their properties may have been changed by environmental effects in the filament before they fell into the galaxy cluster. We present the chemical properties of star-forming dwarf galaxies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-12, Vol.923 (2), p.235
Hauptverfasser: Chung, Jiwon, Kim, Suk, Rey, Soo-Chang, Lee, Youngdae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been proposed that the filament environment is closely connected to the pre-processing of galaxies, where their properties may have been changed by environmental effects in the filament before they fell into the galaxy cluster. We present the chemical properties of star-forming dwarf galaxies (SFDGs) in five filamentary structures (Virgo III, Leo Minor, Leo II A, Leo II B, and Canes Venatici) around the Virgo cluster using the Sloan Digital Sky Survey optical spectroscopic data and Galaxy Evolution Explorer ultraviolet photometric data. We investigate the relationship between stellar mass, gas-phase metallicity, and specific star formation rate (sSFR) of the SFDGs in the Virgo filaments in comparison to those in the Virgo cluster and field. We find that, at a given stellar mass, SFDGs in the Virgo filaments show lower metallicity and higher sSFR than those in the Virgo cluster on average. We observe that SFDGs in the Virgo III filament show enhanced metallicities and suppressed star formation activities comparable to those in the Virgo cluster, whereas SFDGs in the other four filaments exhibit similar properties to the field counterparts. Moreover, about half of the galaxies in the Virgo III filament are found to be morphologically transitional dwarf galaxies that are supposed to be on the way to transforming into quiescent dwarf early-type galaxies. Based on the analysis of the galaxy perturbation parameter, we propose that the local environment represented by the galaxy interactions might be responsible for the contrasting features in chemical pre-processing found in the Virgo filaments.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac3002