The characterization of 2-local Lie automorphisms of some operator algebras

Let M ⊆ B ( X ) be an algebra with nontrivial idempotents or nontrivial projections if M is a ∗ -algebra and Z M = C I . In this paper, the notion of (strong) 2-local Lie automorphism normalized property is introduced and it is proved that if M has 2-local Lie automorphism normalized property and Φ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2021-12, Vol.52 (4), p.961-970
Hauptverfasser: Fang, Xiaochun, Zhao, Xingpeng, Yang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M ⊆ B ( X ) be an algebra with nontrivial idempotents or nontrivial projections if M is a ∗ -algebra and Z M = C I . In this paper, the notion of (strong) 2-local Lie automorphism normalized property is introduced and it is proved that if M has 2-local Lie automorphism normalized property and Φ : M → M is an almost additive surjective 2-local Lie isomorphism with idempotent decomposition property, then Φ = Ψ + τ , where Ψ is an automorphism of M or the negative of an anti-automorphism of M and τ is a homogenous map from M into C I . Moreover, it is proved that nest algebras on a separable complex Hilbert space H with dim H > 2 and factor von Neumann algebras on a separable complex Hilbert space H with dim H ≥ 2 have strong 2-local Lie automorphism normalized property.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-021-00122-8