The characterization of 2-local Lie automorphisms of some operator algebras
Let M ⊆ B ( X ) be an algebra with nontrivial idempotents or nontrivial projections if M is a ∗ -algebra and Z M = C I . In this paper, the notion of (strong) 2-local Lie automorphism normalized property is introduced and it is proved that if M has 2-local Lie automorphism normalized property and Φ...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2021-12, Vol.52 (4), p.961-970 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
⊆
B
(
X
)
be an algebra with nontrivial idempotents or nontrivial projections if
M
is a
∗
-algebra and
Z
M
=
C
I
. In this paper, the notion of (strong) 2-local Lie automorphism normalized property is introduced and it is proved that if
M
has 2-local Lie automorphism normalized property and
Φ
:
M
→
M
is an almost additive surjective 2-local Lie isomorphism with idempotent decomposition property, then
Φ
=
Ψ
+
τ
, where
Ψ
is an automorphism of
M
or the negative of an anti-automorphism of
M
and
τ
is a homogenous map from
M
into
C
I
. Moreover, it is proved that nest algebras on a separable complex Hilbert space
H
with dim
H
>
2 and factor von Neumann algebras on a separable complex Hilbert space
H
with dim
H
≥
2
have strong 2-local Lie automorphism normalized property. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00122-8 |