A novel deep learning network for accurate lane detection in low-light environments

Lane detection algorithms play a key role in Advanced Driver Assistance Systems (ADAS), which are however unable to achieve accurate lane recognition in low-light environments. This paper presents a novel deep network structure, namely LLSS-Net (low-light images semantic segmentation), to achieve ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2022-02, Vol.236 (2-3), p.424-438
Hauptverfasser: Song, Shuang, Chen, Wei, Liu, Qianjie, Hu, Huosheng, Huang, Tengchao, Zhu, Qingyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lane detection algorithms play a key role in Advanced Driver Assistance Systems (ADAS), which are however unable to achieve accurate lane recognition in low-light environments. This paper presents a novel deep network structure, namely LLSS-Net (low-light images semantic segmentation), to achieve accurate lane detection in low-light environments. The method integrates a convolutional neural network for low-light image enhancement and a semantic segmentation network for lane detection. The image quality is firstly improved by a low-light image enhancement network and lane features are then extracted using semantic segmentation. Fast lane clustering is finally performed by using the KD tree models. Cityscapes and Tusimple datasets are utilized to demonstrate the robustness of the proposed method. The experimental results show that the proposed method has an excellent performance for lane detection in low-light roads.
ISSN:0954-4070
2041-2991
DOI:10.1177/09544070211016254