Hear-and-avoid for unmanned air vehicles using convolutional neural networks
To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional neural network is used to perform air traffic detection. Due to restric...
Gespeichert in:
Veröffentlicht in: | International journal of micro air vehicles 2021, Vol.13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional neural network is used to perform air traffic detection. Due to restrictions on flying unmanned air vehicles close to aircraft, the data set has to be artificially produced, so the unmanned air vehicle sound is captured separately from the aircraft sound. They are then mixed with unmanned air vehicle recordings, during which labels are given indicating whether the mixed recording contains aircraft audio or not. The model is a convolutional neural network that uses the features Mel frequency cepstral coefficient, spectrogram or Mel spectrogram as input. For each feature, the effect of unmanned air vehicle/aircraft amplitude ratio, the type of labeling, the window length and the addition of third party aircraft sound database recordings are explored. The results show that the best performance is achieved using the Mel spectrogram feature. The performance increases when the unmanned air vehicle/aircraft amplitude ratio is decreased, when the time window is increased or when the data set is extended with aircraft audio recordings from a third party sound database. Although the currently presented approach has a number of false positives and false negatives that is still too high for real-world application, this study indicates multiple paths forward that can lead to an interesting performance. Finally, the data set is provided as open access. |
---|---|
ISSN: | 1756-8293 1756-8307 |
DOI: | 10.1177/1756829321992137 |