Machine Learning and Urban Drainage Systems: State-of-the-Art Review

In the last decade, machine learning (ML) technology has been transforming daily lives, industries, and various scientific/engineering disciplines. In particular, ML technology has resulted in significant progress in neural network models; these enable the automatic computation of problem-relevant f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-12, Vol.13 (24), p.3545
Hauptverfasser: Kwon, Soon Ho, Kim, Joong Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last decade, machine learning (ML) technology has been transforming daily lives, industries, and various scientific/engineering disciplines. In particular, ML technology has resulted in significant progress in neural network models; these enable the automatic computation of problem-relevant features and rapid capture of highly complex data distributions. We believe that ML approaches can address several significant new and/or old challenges in urban drainage systems (UDSs). This review paper provides a state-of-the-art review of ML-based UDS modeling/application based on three categories: (1) operation (real-time operation control), (2) management (flood-inundation prediction) and (3) maintenance (pipe defect detection). The review reveals that ML is utilized extensively in UDSs to advance model performance and efficiency, extract complex data distribution patterns, and obtain scientific/engineering insights. Additionally, some potential issues and future directions are recommended for three research topics defined in this study to extend UDS modeling/applications based on ML technology. Furthermore, it is suggested that ML technology can promote developments in UDSs. The new paradigm of ML-based UDS modeling/applications summarized here is in its early stages and should be considered in future studies.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13243545