A Lagrangian Backward Air Parcel Trajectories Clustering Framework

Many studies concerning atmosphere moisture paths use Lagrangian backward air parcel trajectories to determine the humidity sources for specific locations. Automatically grouping trajectories according to their geographical position simplifies and speeds up their analysis. In this paper, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-12, Vol.13 (24), p.3638
Hauptverfasser: Rădulescu, Iulia-Maria, Boicea, Alexandru, Rădulescu, Florin, Popeangă, Daniel-Călin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many studies concerning atmosphere moisture paths use Lagrangian backward air parcel trajectories to determine the humidity sources for specific locations. Automatically grouping trajectories according to their geographical position simplifies and speeds up their analysis. In this paper, we propose a framework for clustering Lagrangian backward air parcel trajectories, from trajectory generation to cluster accuracy evaluation. We employ a novel clustering algorithm, called DenLAC, to cluster troposphere air currents trajectories. Our main contribution is representing trajectories as a one-dimensional array consisting of each trajectory’s points position vector directions. We empirically test our pipeline by employing it on several Lagrangian backward trajectories initiated from Břeclav District, Czech Republic.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13243638