Composite as a Material of the Future in the Era of Green Deal Implementation Strategies
Composite materials have become synonymous with modernity, desired in nearly every aspect of our daily lives, from simple everyday objects to sanitary facilities, pipelines, the construction of modern sewer networks, their renovation, water supply, and storage reservoirs, to complex structures—autom...
Gespeichert in:
Veröffentlicht in: | Processes 2021-12, Vol.9 (12), p.2238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Composite materials have become synonymous with modernity, desired in nearly every aspect of our daily lives, from simple everyday objects to sanitary facilities, pipelines, the construction of modern sewer networks, their renovation, water supply, and storage reservoirs, to complex structures—automotive, planes, and space science. Composites have seen a considerable rise in attention owing to their characteristics, durability, strength, reduced energy usage during the manufacturing process, and decreased transportation costs. Composite materials consistently outperform steel, cast iron, and concrete in terms of CO2 emissions. Additionally, these materials have a long service life of about 150 years or more and are corrosion-resistant. Today, continued sustainable development is contingent upon access to safe drinking water and the availability of its resources and modes of conveyance. As a result, composite pipes have considerable potential due to their very low flow rate, which directly affects the prices of drinking water pumping and irrigation systems. However, there are also certain disadvantages associated with fibre-reinforced composites, such as easy surface damage, low heat resistance (up to 220 °C), long product forming time, and high cost of the material. Additionally, the product’s initial high durability and extended life cycle, coupled with high abrasion resistance, anisotropic strength, and stiffness in the final phase, prove to be unfavourable since composite material cannot be rapidly reintroduced into the manufacturing cycle. However, its disposal requires a negligible amount of energy. The article discusses the various composite materials available, their applications, and the potential for further developing their manufacturing technology toward nanocomposites and composites of natural origin that are readily biodegradable at the end of their service life; dubbed “green composites”. The study’s findings are unequivocal: this class of composite materials warrants further investigation in the future since they align perfectly with the concept of sustainable economic growth and Green Deal implementation. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9122238 |