Measurement of Heat Transfer and Flow Resistance for a Packed Bed of Horticultural Products with the Implementation of a Single Blow Technique

This paper provides the practical implementation of the single blow technique as an effective approach of average convective heat transfer coefficient measurement for a packed bed of horticultural products. The measurement approach was positively validated for the case of a packed bed of balls. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-12, Vol.9 (12), p.2151
Hauptverfasser: Łapiński, Adam, Śmierciew, Kamil, Zou, Huiming, Butrymowicz, Dariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides the practical implementation of the single blow technique as an effective approach of average convective heat transfer coefficient measurement for a packed bed of horticultural products. The measurement approach was positively validated for the case of a packed bed of balls. The presented results cover heat transfer coefficient results for carrots stored in packed beds for two various arrangements (regular and irregular) and bed of apples under conditions of various turbulent intensity at the inlet to the bed. The turbulent intensity (defined as the ratio of the root mean square of the turbulent fluctuation of the air velocity to the mean air velocity) varied from 0.02 to 0.14. The applied velocity ranges for the tests refers to the conventional storage conditions. The heat transfer correlations were proposed based on the obtained results for each arrangement. It was demonstrated that due to flow laminarization inside the bed, the turbulence intensity has no significant effect on heat transfer inside the bed. Heat transfer enhancement of up to 25% was demonstrated for the case of the irregular carrot arrangement in the tested bed. The flow resistance correlations were additionally proposed for the tested beds. It was demonstrated that the product arrangement does not produce an important effect on the pressure drop.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9122151