A Novel Pre-Dispatching Strategy of Power System under Extreme Weather

Pre-dispatch is an important way for distribution networks to cope with typhoon weather, enhance resilience and reduce economic losses. In order to accurately describe the faults and consequences of components’ failure in the distribution network, this paper establishes a pre-dispatch model to cope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-12, Vol.9 (12), p.2112
Hauptverfasser: Huang, Tianen, Wu, Zhenjie, Wang, Yuantao, Tang, Jian, Li, Xiang, Mo, Yajun, Li, Chengda, Wu, Wenguo, Xu, Shuangdie, Niu, Tao, Li, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pre-dispatch is an important way for distribution networks to cope with typhoon weather, enhance resilience and reduce economic losses. In order to accurately describe the faults and consequences of components’ failure in the distribution network, this paper establishes a pre-dispatch model to cope with typhoon weather based on line failures consequence analysis. First, Monte Carlo simulation is used to sample the typical fault scenarios of vulnerable lines. According to the location of switchgear, the distribution network is partitioned and a block breaker correlation matrix is established. Combined with the line fault status, a fault consequence model of distribution lines related to the pre-dispatching strategy is established. Then, the objective function is given to minimize the sum of the cost of the pre-dispatch operation and the power outage, and then establish a pre-dispatch model for the distribution network. In order to reduce the computational complexity, PH (Progressive Hedging) algorithm is used to solve the model. Finally, the IEEE-69 test system is used to analyze the effectiveness of the method. The results show that the proposed dispatching model can effectively avoid potential risks, reduce system economic losses and improve the resilience of power grids.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9122112