Slurry-Phase Carbonation Reaction Characteristics of AOD Stainless Steel Slag
Argon oxygen decarburization stainless steel slag (AOD slag) has high mineral carbonation activity. AOD slag carbonation has both the resource utilization of metallurgical waste slag and the carbon reduction effect of CO2 storage. This paper aimed to study carbonation reaction characteristics of AOD...
Gespeichert in:
Veröffentlicht in: | Processes 2021-12, Vol.9 (12), p.2266 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Argon oxygen decarburization stainless steel slag (AOD slag) has high mineral carbonation activity. AOD slag carbonation has both the resource utilization of metallurgical waste slag and the carbon reduction effect of CO2 storage. This paper aimed to study carbonation reaction characteristics of AOD slag. Under the slurry-phase accelerated carbonation route, the effect of stirring speed (r) and reaction temperature (T) on AOD slag’s carbonation was studied by controlling the reaction conditions. Mineral composition analysis and microscopic morphology analysis were used to explore the mineral phase evolution of AOD slag during the carbonation process. Based on the unreacted core model, the kinetic model of the carbonation reaction of AOD slag was analyzed. The results showed that the carbonation ratio of AOD slag reached its maximum value of 66.7% under the reaction conditions of a liquid to solid ratio (L/S) of 8:1, a CO2 partial pressure of 0.2 MPa, a stirring speed of 450 r·min−1, and a reaction temperature of 80 °C. The carbonation reaction of AOD slag was controlled by internal diffusion, and the calculated apparent activation energy was 22.28 kJ/mol. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9122266 |