Preparation of a Highly Porous Clay-Based Absorbent for Hazard Spillage Mitigation via Two-Step Expansion of Vermiculite
Expanded vermiculite (eVMT) has been studied as a risk-free, general-purpose absorbent for liquid hazards due to its excellent thermal and chemical stability. Here, vermiculite was expanded by two steps: exfoliation by 30 wt% H2O2 treatment at 60 °C and subsequent expansion by microwave heating. Thi...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2021-12, Vol.11 (12), p.1371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expanded vermiculite (eVMT) has been studied as a risk-free, general-purpose absorbent for liquid hazards due to its excellent thermal and chemical stability. Here, vermiculite was expanded by two steps: exfoliation by 30 wt% H2O2 treatment at 60 °C and subsequent expansion by microwave heating. This two-step expansion produced more homogenously separated concertina-like eVMTs with a higher total pore volume of 7.75 cm3 g−1 than the conventional thermal method. The two-step eVMT was found to be greatly superior to the thermal and commercial silver counterparts in hazardous liquid-uptake performance. The uptake was simply interpreted as a physical infilling process of a liquid into the eVMT pores, and the spontaneous hazard removal with a great capacity was discussed with the large pore volume of two-step eVMT and its suitable pore dimensions for capillary action. As a practical device, a prototype absorbent assembly made of these eVMTs demonstrated the successful mitigation of liquid hazards on an impermeable surface. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min11121371 |