Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO2/WTe2) Exhibiting Stable Resistive Switching

Two-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-12, Vol.14 (24), p.7535, Article 7535
Hauptverfasser: Dastgeer, Ghulam, Afzal, Amir Muhammad, Aziz, Jamal, Hussain, Sajjad, Jaffery, Syed Hassan Abbas, Kim, Deok-kee, Imran, Muhammad, Assiri, Mohammed Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO2/WTe2) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate. The Ag/SnO2/WTe2/Au flexible devices exhibited highly stable resistive switching along with an excellent retention time. Triggering the device from a high-resistance state (HRS) to a low-resistance state (LRS) is attributed to Ag filament formation because of its diffusion. The conductive filament begins its development from the anode to the cathode, contrary to the formal electrochemical metallization theory. The bilayer structure of SnO2/WTe2 improved the endurance of the devices and reduced the switching voltage by up to 0.2 V compared to the single SnO2 stacked devices. These flexible and low-power-consumption features may lead to the construction of a wearable memory device for data-storage purposes.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14247535