Recent Progress on 3D NAND Flash Technologies
Since 3D NAND was introduced to the industry with 24 layers, the areal density has been successfully increased more than ten times, and has exceeded 10 Gb/mm2 with 176 layers. The physical scaling of XYZ dimensions including layer stacking and footprint scaling enabled the density scaling. Logical s...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-12, Vol.10 (24), p.3156 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since 3D NAND was introduced to the industry with 24 layers, the areal density has been successfully increased more than ten times, and has exceeded 10 Gb/mm2 with 176 layers. The physical scaling of XYZ dimensions including layer stacking and footprint scaling enabled the density scaling. Logical scaling has been successfully realized, too. TLC (triple-level cell, 3 bits per cell) is now the mainstream in 3D NAND, while QLC (quad-level cell, 4 bits per cell) is increasing the presence. Several attempts and partial demonstrations were made for PLC (penta-level cell, 5 bits per cell). CMOS under array (CuA) enabled the die size reduction and performance improvements. Program and erase schemes to address the technology challenges such as short-term data retention of the charge-trap cell and the large block size are being investigated. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10243156 |