Cloud Server and Internet of Things Assisted System for Stress Monitoring

Currently, the Internet of Things (IoT) has gained attention for its capability for real-time monitoring. The advancement in sensor and wireless communication technology has led to the widespread adoption of IoT technology in distinct applications. The cloud server, in conjunction with the IoT, enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-12, Vol.10 (24), p.3133
Hauptverfasser: Singh, Rajesh, Gehlot, Anita, Rashid, Mamoon, Saxena, Ritika, Akram, Shaik Vaseem, Alshamrani, Sultan S., AlGhamdi, Ahmed Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, the Internet of Things (IoT) has gained attention for its capability for real-time monitoring. The advancement in sensor and wireless communication technology has led to the widespread adoption of IoT technology in distinct applications. The cloud server, in conjunction with the IoT, enables the visualization and analysis of real-time sensor data. The literature concludes that there is a lack of remote stress-monitoring devices available to assist doctors in observing the real-time stress status of patients in the hospital and in rehabilitation centers. To overcome this problem, we have proposed the use of the IoT and cloud-enabled stress devices to detect stress in a real-time environment. The IoT-enabled stress device establishes piconet communication with the master node to allow visualization of the sensory data on the cloud server. The threshold value (volt) for real-time stress detection by the stress device is identified by experimental analysis using MATLAB based on the results obtained from the performance of three different physical-stress generating tasks. In addition, the stress device is interfaced with the cloud server, and the sensor data are recorded on the cloud server. The sensor data logged into the cloud server can be utilized for future analysis.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10243133