On Cohen’s theorem for modules
In this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R -module, then M is Noetherian if and only if for every prime ideal P of R with A n n ( M ) ⊆ P , there exists a finitely generated submodule N P of M such that P M ⊆ N P ⊆ M ( P ) .
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2021-09, Vol.52 (3), p.869-871 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that if
R
is a commutative ring with unity and
M
is a finitely generated
R
-module, then
M
is Noetherian if and only if for every prime ideal
P
of
R
with
A
n
n
(
M
)
⊆
P
, there exists a finitely generated submodule
N
P
of
M
such that
P
M
⊆
N
P
⊆
M
(
P
)
. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00101-z |