On Cohen’s theorem for modules

In this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R -module, then M is Noetherian if and only if for every prime ideal P of R with A n n ( M ) ⊆ P , there exists a finitely generated submodule N P of M such that P M ⊆ N P ⊆ M ( P ) .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2021-09, Vol.52 (3), p.869-871
Hauptverfasser: Parkash, Anand, Kour, Surjeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that if R is a commutative ring with unity and M is a finitely generated R -module, then M is Noetherian if and only if for every prime ideal P of R with A n n ( M ) ⊆ P , there exists a finitely generated submodule N P of M such that P M ⊆ N P ⊆ M ( P ) .
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-021-00101-z