Influence of the Metabolic Activity of Microorganisms on Disinfection Efficiency of the Visible Light and P25 TiO2 Photocatalyst

The beneficial photocatalytic properties of UV light activated TiO2 powder are well-known and have been demonstrated with various pollutants and pathogens. However, traditionally observed photocatalytic activity of visible light activated pristine TiO2 is insignificant but there are a few studies wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2021-12, Vol.11 (12), p.1432
Hauptverfasser: Sakalauskaite, Sandra, Vasiliauske, Deimante, Demikyte, Emilija, Daugelavicius, Rimantas, Lelis, Martynas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The beneficial photocatalytic properties of UV light activated TiO2 powder are well-known and have been demonstrated with various pollutants and pathogens. However, traditionally observed photocatalytic activity of visible light activated pristine TiO2 is insignificant but there are a few studies which have reported that under some specific conditions commercially available TiO2 powder could at least partially disinfect microorganisms even under visible light. To better understand this phenomenon, in the current study we focused on bacteria response to the treatment by visible light and P25 TiO2 powder. More specifically, we analyzed the relationship between the bacteria viability, outer membrane permeability, metabolism, and its capacity to generate intracellular reactive oxygen species. During the study we assayed the viability of treated bacteria by the spread plate technique and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Changes in bacterial outer membrane permeability were determined by measuring the fluorescence of N-phenyl-1-naphthylamine (NPN). To detect intracellular reactive oxygen species formation, the fluorescence of dichlorodihydrofluorescein diacetate (DCFH-DA) was assayed. Results of our study indicated that TiO2 and wide spectrum visible light irradiation damaged the integrity of the outer membrane and caused oxidative stress in the metabolizing bacteria. When favorable conditions were created, these effects added up and unexpectedly high bacterial inactivation was achieved.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal11121432