BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images

Simple Summary Breast cancer diagnosis at an early stage using mammography is important, as it assists clinical specialists in treatment planning to increase survival rates. The aim of this study is to construct an effective method to classify breast images into four classes with a low error rate. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology (Basel, Switzerland) Switzerland), 2021-12, Vol.10 (12), p.1347, Article 1347
Hauptverfasser: Montaha, Sidratul, Azam, Sami, Rafid, Abul Kalam Muhammad Rakibul Haque, Ghosh, Pronab, Hasan, Md. Zahid, Jonkman, Mirjam, De Boer, Friso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simple Summary Breast cancer diagnosis at an early stage using mammography is important, as it assists clinical specialists in treatment planning to increase survival rates. The aim of this study is to construct an effective method to classify breast images into four classes with a low error rate. Initially, unwanted regions of mammograms are removed, the quality is enhanced, and the cancerous lesions are highlighted with different artifacts removal, noise reduction, and enhancement techniques. The number of mammograms is increased using seven augmentation techniques to deal with over-fitting and under-fitting problems. Afterwards, six fine-tuned convolution neural networks (CNNs), originally developed for other purposes, are evaluated, and VGG16 yielded the highest performance. We propose a BreastNet18 model based on the fine-tuned VGG16, changing different hyper parameters and layer structures after experimentation with our dataset. Performing an ablation study on the proposed model and selecting suitable parameter values for preprocessing algorithms increases the accuracy of our model to 98.02%, outperforming some existing state-of-the-art approaches. To analyze the performance, several performance metrics are generated and evaluated for every model and for BreastNet18. Results suggest that accuracy improvement can be obtained through image pre-processing techniques, augmentation, and ablation study. To investigate possible overfitting issues, a k-fold cross validation is carried out. To assert the robustness of the network, the model is tested on a dataset containing noisy mammograms. This may help medical specialists in efficient and accurate diagnosis and early treatment planning. Background: Identification and treatment of breast cancer at an early stage can reduce mortality. Currently, mammography is the most widely used effective imaging technique in breast cancer detection. However, an erroneous mammogram based interpretation may result in false diagnosis rate, as distinguishing cancerous masses from adjacent tissue is often complex and error-prone. Methods: Six pre-trained and fine-tuned deep CNN architectures: VGG16, VGG19, MobileNetV2, ResNet50, DenseNet201, and InceptionV3 are evaluated to determine which model yields the best performance. We propose a BreastNet18 model using VGG16 as foundational base, since VGG16 performs with the highest accuracy. An ablation study is performed on BreastNet18, to evaluate its robustness and achieve the hig
ISSN:2079-7737
2079-7737
DOI:10.3390/biology10121347