A dynamical scan path model for task-dependence during scene viewing

In real-world scene perception human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via salie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Schwetlick, Lisa, Backhaus, Daniel, Engbert, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In real-world scene perception human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here we propose a scan path model for both fixation positions and fixation durations, which includes influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan path statistics across individual observers.
ISSN:2331-8422