Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state

Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N 2 ) solubility in normal alkanes as the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-12, Vol.11 (1), p.24403-24403, Article 24403
Hauptverfasser: Madani, Seyed Ali, Mohammadi, Mohammad-Reza, Atashrouz, Saeid, Abedi, Ali, Hemmati-Sarapardeh, Abdolhossein, Mohaddespour, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N 2 ) solubility in normal alkanes as the major constituents of crude oil was modeled using five representative machine learning (ML) models namely gradient boosting with categorical features support (CatBoost), random forest, light gradient boosting machine (LightGBM), k-nearest neighbors (k-NN), and extreme gradient boosting (XGBoost). A large solubility databank containing 1982 data points was utilized to establish the models for predicting N 2 solubility in normal alkanes as a function of pressure, temperature, and molecular weight of normal alkanes over broad ranges of operating pressure (0.0212–69.12 MPa) and temperature (91–703 K). The molecular weight range of normal alkanes was from 16 to 507 g/mol. Also, five equations of state (EOSs) including Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Zudkevitch–Joffe (ZJ), Peng–Robinson (PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) were used comparatively with the ML models to estimate N 2 solubility in normal alkanes. Results revealed that the CatBoost model is the most precise model in this work with a root mean square error of 0.0147 and coefficient of determination of 0.9943. ZJ EOS also provided the best estimates for the N 2 solubility in normal alkanes among the EOSs. Lastly, the results of relevancy factor analysis indicated that pressure has the greatest influence on N 2 solubility in normal alkanes and the N 2 solubility increases with increasing the molecular weight of normal alkanes.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-03643-8