Template Matching and Change Point Detection by M-Estimation
We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-01, Vol.68 (1), p.423-447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 1 |
container_start_page | 423 |
container_title | IEEE transactions on information theory |
container_volume | 68 |
creator | Arias-Castro, Ery Zheng, Lin |
description | We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more. |
doi_str_mv | 10.1109/TIT.2021.3112680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612466559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537815</ieee_id><sourcerecordid>2612466559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMNskm4EVq1UKLHtZzyG4m7ZZ2t27iof_eLS2ehg_eNzM8Qu6BTQCYeSrn5YQzDpMcgCvNLsgIpCwyo6S4JCPGQGdGCH1NbmLcDFFI4CPyXOJuv3UJ6dKlet20K-paT6dr166QfnVNm-grJqxT07W0OtBlNoup2bljviVXwW0j3p3nmHy_zcrpR7b4fJ9PXxZZzYVImdKFdgKwVkxIF5gKla855yxUShkf8iIwH7hXuRYGhAf02ssaNCrv0VT5mDye9u777ucXY7Kb7rdvh5OWK-BCKSnNQLETVfddjD0Gu--HR_uDBWaPjuzgyB4d2bOjofJwqjSI-I8bmRcaZP4HgrhhaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466559</pqid></control><display><type>article</type><title>Template Matching and Change Point Detection by M-Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Arias-Castro, Ery ; Zheng, Lin</creator><creatorcontrib>Arias-Castro, Ery ; Zheng, Lin</creatorcontrib><description>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3112680</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>change point detection ; Convergence ; empirical processes ; M-estimation ; Matched filter ; Maximum likelihood estimation ; minimax optimality ; Minimax technique ; Noise measurement ; scan statistics ; Shape ; signal alignment ; Signal processing ; Task analysis ; Template matching</subject><ispartof>IEEE transactions on information theory, 2022-01, Vol.68 (1), p.423-447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</cites><orcidid>0000-0001-6837-1914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arias-Castro, Ery</creatorcontrib><creatorcontrib>Zheng, Lin</creatorcontrib><title>Template Matching and Change Point Detection by M-Estimation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</description><subject>change point detection</subject><subject>Convergence</subject><subject>empirical processes</subject><subject>M-estimation</subject><subject>Matched filter</subject><subject>Maximum likelihood estimation</subject><subject>minimax optimality</subject><subject>Minimax technique</subject><subject>Noise measurement</subject><subject>scan statistics</subject><subject>Shape</subject><subject>signal alignment</subject><subject>Signal processing</subject><subject>Task analysis</subject><subject>Template matching</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMNskm4EVq1UKLHtZzyG4m7ZZ2t27iof_eLS2ehg_eNzM8Qu6BTQCYeSrn5YQzDpMcgCvNLsgIpCwyo6S4JCPGQGdGCH1NbmLcDFFI4CPyXOJuv3UJ6dKlet20K-paT6dr166QfnVNm-grJqxT07W0OtBlNoup2bljviVXwW0j3p3nmHy_zcrpR7b4fJ9PXxZZzYVImdKFdgKwVkxIF5gKla855yxUShkf8iIwH7hXuRYGhAf02ssaNCrv0VT5mDye9u777ucXY7Kb7rdvh5OWK-BCKSnNQLETVfddjD0Gu--HR_uDBWaPjuzgyB4d2bOjofJwqjSI-I8bmRcaZP4HgrhhaQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Arias-Castro, Ery</creator><creator>Zheng, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6837-1914</orcidid></search><sort><creationdate>202201</creationdate><title>Template Matching and Change Point Detection by M-Estimation</title><author>Arias-Castro, Ery ; Zheng, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>change point detection</topic><topic>Convergence</topic><topic>empirical processes</topic><topic>M-estimation</topic><topic>Matched filter</topic><topic>Maximum likelihood estimation</topic><topic>minimax optimality</topic><topic>Minimax technique</topic><topic>Noise measurement</topic><topic>scan statistics</topic><topic>Shape</topic><topic>signal alignment</topic><topic>Signal processing</topic><topic>Task analysis</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Castro, Ery</creatorcontrib><creatorcontrib>Zheng, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arias-Castro, Ery</au><au>Zheng, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template Matching and Change Point Detection by M-Estimation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-01</date><risdate>2022</risdate><volume>68</volume><issue>1</issue><spage>423</spage><epage>447</epage><pages>423-447</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3112680</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6837-1914</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2022-01, Vol.68 (1), p.423-447 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2612466559 |
source | IEEE Electronic Library (IEL) |
subjects | change point detection Convergence empirical processes M-estimation Matched filter Maximum likelihood estimation minimax optimality Minimax technique Noise measurement scan statistics Shape signal alignment Signal processing Task analysis Template matching |
title | Template Matching and Change Point Detection by M-Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template%20Matching%20and%20Change%20Point%20Detection%20by%20M-Estimation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Arias-Castro,%20Ery&rft.date=2022-01&rft.volume=68&rft.issue=1&rft.spage=423&rft.epage=447&rft.pages=423-447&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3112680&rft_dat=%3Cproquest_RIE%3E2612466559%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466559&rft_id=info:pmid/&rft_ieee_id=9537815&rfr_iscdi=true |