Template Matching and Change Point Detection by M-Estimation

We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-01, Vol.68 (1), p.423-447
Hauptverfasser: Arias-Castro, Ery, Zheng, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 1
container_start_page 423
container_title IEEE transactions on information theory
container_volume 68
creator Arias-Castro, Ery
Zheng, Lin
description We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.
doi_str_mv 10.1109/TIT.2021.3112680
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2612466559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537815</ieee_id><sourcerecordid>2612466559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMNskm4EVq1UKLHtZzyG4m7ZZ2t27iof_eLS2ehg_eNzM8Qu6BTQCYeSrn5YQzDpMcgCvNLsgIpCwyo6S4JCPGQGdGCH1NbmLcDFFI4CPyXOJuv3UJ6dKlet20K-paT6dr166QfnVNm-grJqxT07W0OtBlNoup2bljviVXwW0j3p3nmHy_zcrpR7b4fJ9PXxZZzYVImdKFdgKwVkxIF5gKla855yxUShkf8iIwH7hXuRYGhAf02ssaNCrv0VT5mDye9u777ucXY7Kb7rdvh5OWK-BCKSnNQLETVfddjD0Gu--HR_uDBWaPjuzgyB4d2bOjofJwqjSI-I8bmRcaZP4HgrhhaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466559</pqid></control><display><type>article</type><title>Template Matching and Change Point Detection by M-Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Arias-Castro, Ery ; Zheng, Lin</creator><creatorcontrib>Arias-Castro, Ery ; Zheng, Lin</creatorcontrib><description>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3112680</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>change point detection ; Convergence ; empirical processes ; M-estimation ; Matched filter ; Maximum likelihood estimation ; minimax optimality ; Minimax technique ; Noise measurement ; scan statistics ; Shape ; signal alignment ; Signal processing ; Task analysis ; Template matching</subject><ispartof>IEEE transactions on information theory, 2022-01, Vol.68 (1), p.423-447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</cites><orcidid>0000-0001-6837-1914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arias-Castro, Ery</creatorcontrib><creatorcontrib>Zheng, Lin</creatorcontrib><title>Template Matching and Change Point Detection by M-Estimation</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</description><subject>change point detection</subject><subject>Convergence</subject><subject>empirical processes</subject><subject>M-estimation</subject><subject>Matched filter</subject><subject>Maximum likelihood estimation</subject><subject>minimax optimality</subject><subject>Minimax technique</subject><subject>Noise measurement</subject><subject>scan statistics</subject><subject>Shape</subject><subject>signal alignment</subject><subject>Signal processing</subject><subject>Task analysis</subject><subject>Template matching</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMNskm4EVq1UKLHtZzyG4m7ZZ2t27iof_eLS2ehg_eNzM8Qu6BTQCYeSrn5YQzDpMcgCvNLsgIpCwyo6S4JCPGQGdGCH1NbmLcDFFI4CPyXOJuv3UJ6dKlet20K-paT6dr166QfnVNm-grJqxT07W0OtBlNoup2bljviVXwW0j3p3nmHy_zcrpR7b4fJ9PXxZZzYVImdKFdgKwVkxIF5gKla855yxUShkf8iIwH7hXuRYGhAf02ssaNCrv0VT5mDye9u777ucXY7Kb7rdvh5OWK-BCKSnNQLETVfddjD0Gu--HR_uDBWaPjuzgyB4d2bOjofJwqjSI-I8bmRcaZP4HgrhhaQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Arias-Castro, Ery</creator><creator>Zheng, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6837-1914</orcidid></search><sort><creationdate>202201</creationdate><title>Template Matching and Change Point Detection by M-Estimation</title><author>Arias-Castro, Ery ; Zheng, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-6878a41ec6045af06fbdc2220fb669df37f0df2d6384914d1ed8d5c18e6dde9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>change point detection</topic><topic>Convergence</topic><topic>empirical processes</topic><topic>M-estimation</topic><topic>Matched filter</topic><topic>Maximum likelihood estimation</topic><topic>minimax optimality</topic><topic>Minimax technique</topic><topic>Noise measurement</topic><topic>scan statistics</topic><topic>Shape</topic><topic>signal alignment</topic><topic>Signal processing</topic><topic>Task analysis</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Castro, Ery</creatorcontrib><creatorcontrib>Zheng, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arias-Castro, Ery</au><au>Zheng, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template Matching and Change Point Detection by M-Estimation</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-01</date><risdate>2022</risdate><volume>68</volume><issue>1</issue><spage>423</spage><epage>447</epage><pages>423-447</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3112680</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6837-1914</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-01, Vol.68 (1), p.423-447
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2612466559
source IEEE Electronic Library (IEL)
subjects change point detection
Convergence
empirical processes
M-estimation
Matched filter
Maximum likelihood estimation
minimax optimality
Minimax technique
Noise measurement
scan statistics
Shape
signal alignment
Signal processing
Task analysis
Template matching
title Template Matching and Change Point Detection by M-Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template%20Matching%20and%20Change%20Point%20Detection%20by%20M-Estimation&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Arias-Castro,%20Ery&rft.date=2022-01&rft.volume=68&rft.issue=1&rft.spage=423&rft.epage=447&rft.pages=423-447&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3112680&rft_dat=%3Cproquest_RIE%3E2612466559%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466559&rft_id=info:pmid/&rft_ieee_id=9537815&rfr_iscdi=true