Template Matching and Change Point Detection by M-Estimation

We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-01, Vol.68 (1), p.423-447
Hauptverfasser: Arias-Castro, Ery, Zheng, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3112680