Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108

Microresonators of ultrahigh quality (Q) factors represent a crucial type of photonic devices aiming at ultra-high spectral resolution, ultra-high sensitivity to the environmental perturbations, and efficient nonlinear wavelength conversions at low threshold pump powers. Lithium niobate on insulator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-12, Vol.23 (12), p.123027
Hauptverfasser: Gao, Renhong, Zhang, Haisu, Bo, Fang, Fang, Wei, Hao, Zhenzhong, Yao, Ni, Lin, Jintian, Guan, Jianglin, Deng, Li, Wang, Min, Qiao, Lingling, Cheng, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microresonators of ultrahigh quality (Q) factors represent a crucial type of photonic devices aiming at ultra-high spectral resolution, ultra-high sensitivity to the environmental perturbations, and efficient nonlinear wavelength conversions at low threshold pump powers. Lithium niobate on insulator (LNOI) microdisks of high Q factors are particularly attractive due to its large second-order nonlinear coefficient and strong electro-optic property. In this letter, we break through the long standing bottleneck in achieving the Q factors of LNOI microresonators beyond 108, which approaches the intrinsic material absorption limit of lithium niobate (LN). The ultra-high Q factors give rise to a rich family of nonlinear optical phenomena from optical parametric oscillation (OPO) to harmonics generation with unprecedented characteristics including ultra-low pump threshold, high wavelength conversion efficiency, and ultra-broad operation bandwidth. Specifically, the threshold of OPO is measured to be only 19.6 μW, and the absolute conversion efficiency observed in the second harmonic generation reaches 23%. The record-breaking performances of the on-chip ultra-high Q LNOI microresonators will have profound implication for both photonic research and industry.
ISSN:1367-2630
DOI:10.1088/1367-2630/ac3d52