Refining Eigenvalue Estimates for a String with a Singular Weight

We consider the linear differential pencil , where is the Sturm–Liouville operator with singular potential , is the operator of multiplication by a singular weight , , and is the spectral parameter. It is assumed that the potential and the weight belong to the Sobolev space with a negative smoothnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2021-10, Vol.57 (10), p.1292-1298
1. Verfasser: Ivanov, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the linear differential pencil , where is the Sturm–Liouville operator with singular potential , is the operator of multiplication by a singular weight , , and is the spectral parameter. It is assumed that the potential and the weight belong to the Sobolev space with a negative smoothness exponent, is a real-valued function, and is a complex-valued function. We prove that the estimate , where is a constant independent of , holds for the eigenvalues , , of the pencil for all .
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266121100037