Refining Eigenvalue Estimates for a String with a Singular Weight
We consider the linear differential pencil , where is the Sturm–Liouville operator with singular potential , is the operator of multiplication by a singular weight , , and is the spectral parameter. It is assumed that the potential and the weight belong to the Sobolev space with a negative smoothnes...
Gespeichert in:
Veröffentlicht in: | Differential equations 2021-10, Vol.57 (10), p.1292-1298 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the linear differential pencil
, where
is the Sturm–Liouville operator with singular potential
,
is the operator of multiplication by a singular weight
,
, and
is the spectral parameter. It is assumed that the potential
and the weight
belong to the Sobolev space
with a negative smoothness exponent,
is a real-valued function, and
is a complex-valued function. We prove that the estimate
, where
is a constant independent of
, holds for the eigenvalues
,
, of the pencil
for all
. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266121100037 |