A lower bound for Cusick’s conjecture on the digits of n + t
Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density $${c_t} = \mathop {\lim }\limits_{N \to \infty } {1 \over N}|\{ 0 \le n < N:s(n + t) \ge s(n)\} |.$$ T. W. Cus...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2022-01, Vol.172 (1), p.139-161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!