A lower bound for Cusick’s conjecture on the digits of n + t
Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density $${c_t} = \mathop {\lim }\limits_{N \to \infty } {1 \over N}|\{ 0 \le n < N:s(n + t) \ge s(n)\} |.$$ T. W. Cus...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2022-01, Vol.172 (1), p.139-161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density
$${c_t} = \mathop {\lim }\limits_{N \to \infty } {1 \over N}|\{ 0 \le n < N:s(n + t) \ge s(n)\} |.$$
T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however, no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t, is known. In this paper, we prove that ct > 1/2 – ε as soon as t contains sufficiently many blocks of 1s in its binary expansion. In the proof, we provide estimates for the moments of an associated probability distribution; this extends the study initiated by Emme and Prikhod’ko (2017) and pursued by Emme and Hubert (2018). |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004121000153 |