Attention-Based Graph Convolutional Network for Zero-Shot Learning with Pre-Training

Zero-shot learning (ZSL) is a powerful and promising learning paradigm for classifying instances that have not been seen in training. Although graph convolutional networks (GCNs) have recently shown great potential for the ZSL tasks, these models cannot adjust the constant connection weights between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-12, Vol.2021, p.1-13
Hauptverfasser: Wu, Xuefei, Liu, Mingjiang, Xin, Bo, Zhu, Zhangqing, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zero-shot learning (ZSL) is a powerful and promising learning paradigm for classifying instances that have not been seen in training. Although graph convolutional networks (GCNs) have recently shown great potential for the ZSL tasks, these models cannot adjust the constant connection weights between the nodes in knowledge graph and the neighbor nodes contribute equally to classify the central node. In this study, we apply an attention mechanism to adjust the connection weights adaptively to learn more important information for classifying unseen target nodes. First, we propose an attention graph convolutional network for zero-shot learning (AGCNZ) by integrating the attention mechanism and GCN directly. Then, in order to prevent the dilution of knowledge from distant nodes, we apply the dense graph propagation (DGP) model for the ZSL tasks and propose an attention dense graph propagation model for zero-shot learning (ADGPZ). Finally, we propose a modified loss function with a relaxation factor to further improve the performance of the learned classifier. Experimental results under different pre-training settings verified the effectiveness of the proposed attention-based models for ZSL.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/7480712