Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch

In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2021-12, Vol.49 (12), p.4022-4033
Hauptverfasser: Cheon, Cheongbin, Hur, Min Young, Kim, Ho Jun, Lee, Hae June
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4033
container_issue 12
container_start_page 4022
container_title IEEE transactions on plasma science
container_volume 49
creator Cheon, Cheongbin
Hur, Min Young
Kim, Ho Jun
Lee, Hae June
description In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.
doi_str_mv 10.1109/TPS.2021.3126788
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610988775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9625658</ieee_id><sourcerecordid>2610988775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NE1ylLHNwdDJ5rmk6avL6NqZtIP-92ZMPL3v4fN9j_dB6JGSCaVEv2zXmwkjjE44ZZlU6gqNqOY60VyKazQiRPOEK8pv0V0Ie0JoKggbITerKrBdwG2FP3to7M4133hhAp4DlOfcNnjj6hN4_G6a9mh852wNeDM03Q6CC7gYcEx42ZS97dwJ6gFP2_5YQ4nXtQkHg7ett7t7dFOZOsDD3xyjr_lsO31LVh-L5fR1lVguZJdoqpWWwjClaUU006kAmTLOyqogpaqkJikTXMdECMQXI0ltlhlVQKGJ5WP0fNl79O1PD6HL923vm3gyZ1k0pZSUIlLkQlnfhuChyo_eHYwfckrys9A8Cs3PQvM_obHydKk4APjHdcZEJhT_BcAfcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610988775</pqid></control><display><type>article</type><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><source>IEEE Electronic Library (IEL)</source><creator>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</creator><creatorcontrib>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</creatorcontrib><description>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3126788</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Evaporation ; Gas flow ; Gas temperature ; Inductively coupled plasma ; Microparticles ; Nanoparticle synthesis ; Nanoparticles ; Nucleation ; Numerical analysis ; Particle size distribution ; Plasma temperature ; Plasmas ; Quenching ; radio frequency (RF) plasma torches ; Silver ; Synthesis ; Temperature distribution ; Temperature profiles ; Vapors</subject><ispartof>IEEE transactions on plasma science, 2021-12, Vol.49 (12), p.4022-4033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</citedby><cites>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</cites><orcidid>0000-0002-6752-8905 ; 0000-0003-3401-3355 ; 0000-0002-1450-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9625658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9625658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheon, Cheongbin</creatorcontrib><creatorcontrib>Hur, Min Young</creatorcontrib><creatorcontrib>Kim, Ho Jun</creatorcontrib><creatorcontrib>Lee, Hae June</creatorcontrib><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</description><subject>Evaporation</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Inductively coupled plasma</subject><subject>Microparticles</subject><subject>Nanoparticle synthesis</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Numerical analysis</subject><subject>Particle size distribution</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>Quenching</subject><subject>radio frequency (RF) plasma torches</subject><subject>Silver</subject><subject>Synthesis</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Vapors</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NE1ylLHNwdDJ5rmk6avL6NqZtIP-92ZMPL3v4fN9j_dB6JGSCaVEv2zXmwkjjE44ZZlU6gqNqOY60VyKazQiRPOEK8pv0V0Ie0JoKggbITerKrBdwG2FP3to7M4133hhAp4DlOfcNnjj6hN4_G6a9mh852wNeDM03Q6CC7gYcEx42ZS97dwJ6gFP2_5YQ4nXtQkHg7ett7t7dFOZOsDD3xyjr_lsO31LVh-L5fR1lVguZJdoqpWWwjClaUU006kAmTLOyqogpaqkJikTXMdECMQXI0ltlhlVQKGJ5WP0fNl79O1PD6HL923vm3gyZ1k0pZSUIlLkQlnfhuChyo_eHYwfckrys9A8Cs3PQvM_obHydKk4APjHdcZEJhT_BcAfcLQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cheon, Cheongbin</creator><creator>Hur, Min Young</creator><creator>Kim, Ho Jun</creator><creator>Lee, Hae June</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6752-8905</orcidid><orcidid>https://orcid.org/0000-0003-3401-3355</orcidid><orcidid>https://orcid.org/0000-0002-1450-6446</orcidid></search><sort><creationdate>20211201</creationdate><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><author>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Evaporation</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Inductively coupled plasma</topic><topic>Microparticles</topic><topic>Nanoparticle synthesis</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Numerical analysis</topic><topic>Particle size distribution</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>Quenching</topic><topic>radio frequency (RF) plasma torches</topic><topic>Silver</topic><topic>Synthesis</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Cheongbin</creatorcontrib><creatorcontrib>Hur, Min Young</creatorcontrib><creatorcontrib>Kim, Ho Jun</creatorcontrib><creatorcontrib>Lee, Hae June</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheon, Cheongbin</au><au>Hur, Min Young</au><au>Kim, Ho Jun</au><au>Lee, Hae June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>49</volume><issue>12</issue><spage>4022</spage><epage>4033</epage><pages>4022-4033</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3126788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6752-8905</orcidid><orcidid>https://orcid.org/0000-0003-3401-3355</orcidid><orcidid>https://orcid.org/0000-0002-1450-6446</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2021-12, Vol.49 (12), p.4022-4033
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_2610988775
source IEEE Electronic Library (IEL)
subjects Evaporation
Gas flow
Gas temperature
Inductively coupled plasma
Microparticles
Nanoparticle synthesis
Nanoparticles
Nucleation
Numerical analysis
Particle size distribution
Plasma temperature
Plasmas
Quenching
radio frequency (RF) plasma torches
Silver
Synthesis
Temperature distribution
Temperature profiles
Vapors
title Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Quenching%20Gas%20Feeding%20on%20Silver%20Nanoparticle%20Synthesis%20by%20the%20Inductively%20Coupled%20Plasma%20Torch&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Cheon,%20Cheongbin&rft.date=2021-12-01&rft.volume=49&rft.issue=12&rft.spage=4022&rft.epage=4033&rft.pages=4022-4033&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3126788&rft_dat=%3Cproquest_RIE%3E2610988775%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610988775&rft_id=info:pmid/&rft_ieee_id=9625658&rfr_iscdi=true