Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch
In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2021-12, Vol.49 (12), p.4022-4033 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4033 |
---|---|
container_issue | 12 |
container_start_page | 4022 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Cheon, Cheongbin Hur, Min Young Kim, Ho Jun Lee, Hae June |
description | In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters. |
doi_str_mv | 10.1109/TPS.2021.3126788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2610988775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9625658</ieee_id><sourcerecordid>2610988775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NE1ylLHNwdDJ5rmk6avL6NqZtIP-92ZMPL3v4fN9j_dB6JGSCaVEv2zXmwkjjE44ZZlU6gqNqOY60VyKazQiRPOEK8pv0V0Ie0JoKggbITerKrBdwG2FP3to7M4133hhAp4DlOfcNnjj6hN4_G6a9mh852wNeDM03Q6CC7gYcEx42ZS97dwJ6gFP2_5YQ4nXtQkHg7ett7t7dFOZOsDD3xyjr_lsO31LVh-L5fR1lVguZJdoqpWWwjClaUU006kAmTLOyqogpaqkJikTXMdECMQXI0ltlhlVQKGJ5WP0fNl79O1PD6HL923vm3gyZ1k0pZSUIlLkQlnfhuChyo_eHYwfckrys9A8Cs3PQvM_obHydKk4APjHdcZEJhT_BcAfcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610988775</pqid></control><display><type>article</type><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><source>IEEE Electronic Library (IEL)</source><creator>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</creator><creatorcontrib>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</creatorcontrib><description>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3126788</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Evaporation ; Gas flow ; Gas temperature ; Inductively coupled plasma ; Microparticles ; Nanoparticle synthesis ; Nanoparticles ; Nucleation ; Numerical analysis ; Particle size distribution ; Plasma temperature ; Plasmas ; Quenching ; radio frequency (RF) plasma torches ; Silver ; Synthesis ; Temperature distribution ; Temperature profiles ; Vapors</subject><ispartof>IEEE transactions on plasma science, 2021-12, Vol.49 (12), p.4022-4033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</citedby><cites>FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</cites><orcidid>0000-0002-6752-8905 ; 0000-0003-3401-3355 ; 0000-0002-1450-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9625658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9625658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheon, Cheongbin</creatorcontrib><creatorcontrib>Hur, Min Young</creatorcontrib><creatorcontrib>Kim, Ho Jun</creatorcontrib><creatorcontrib>Lee, Hae June</creatorcontrib><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</description><subject>Evaporation</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Inductively coupled plasma</subject><subject>Microparticles</subject><subject>Nanoparticle synthesis</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Numerical analysis</subject><subject>Particle size distribution</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>Quenching</subject><subject>radio frequency (RF) plasma torches</subject><subject>Silver</subject><subject>Synthesis</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Vapors</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NE1ylLHNwdDJ5rmk6avL6NqZtIP-92ZMPL3v4fN9j_dB6JGSCaVEv2zXmwkjjE44ZZlU6gqNqOY60VyKazQiRPOEK8pv0V0Ie0JoKggbITerKrBdwG2FP3to7M4133hhAp4DlOfcNnjj6hN4_G6a9mh852wNeDM03Q6CC7gYcEx42ZS97dwJ6gFP2_5YQ4nXtQkHg7ett7t7dFOZOsDD3xyjr_lsO31LVh-L5fR1lVguZJdoqpWWwjClaUU006kAmTLOyqogpaqkJikTXMdECMQXI0ltlhlVQKGJ5WP0fNl79O1PD6HL923vm3gyZ1k0pZSUIlLkQlnfhuChyo_eHYwfckrys9A8Cs3PQvM_obHydKk4APjHdcZEJhT_BcAfcLQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cheon, Cheongbin</creator><creator>Hur, Min Young</creator><creator>Kim, Ho Jun</creator><creator>Lee, Hae June</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6752-8905</orcidid><orcidid>https://orcid.org/0000-0003-3401-3355</orcidid><orcidid>https://orcid.org/0000-0002-1450-6446</orcidid></search><sort><creationdate>20211201</creationdate><title>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</title><author>Cheon, Cheongbin ; Hur, Min Young ; Kim, Ho Jun ; Lee, Hae June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9198975a2891f092945e74232dfb0d8f790425398f700e193a281c66a8beb90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Evaporation</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Inductively coupled plasma</topic><topic>Microparticles</topic><topic>Nanoparticle synthesis</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Numerical analysis</topic><topic>Particle size distribution</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>Quenching</topic><topic>radio frequency (RF) plasma torches</topic><topic>Silver</topic><topic>Synthesis</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Cheongbin</creatorcontrib><creatorcontrib>Hur, Min Young</creatorcontrib><creatorcontrib>Kim, Ho Jun</creatorcontrib><creatorcontrib>Lee, Hae June</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheon, Cheongbin</au><au>Hur, Min Young</au><au>Kim, Ho Jun</au><au>Lee, Hae June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>49</volume><issue>12</issue><spage>4022</spage><epage>4033</epage><pages>4022-4033</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3126788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6752-8905</orcidid><orcidid>https://orcid.org/0000-0003-3401-3355</orcidid><orcidid>https://orcid.org/0000-0002-1450-6446</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-12, Vol.49 (12), p.4022-4033 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_2610988775 |
source | IEEE Electronic Library (IEL) |
subjects | Evaporation Gas flow Gas temperature Inductively coupled plasma Microparticles Nanoparticle synthesis Nanoparticles Nucleation Numerical analysis Particle size distribution Plasma temperature Plasmas Quenching radio frequency (RF) plasma torches Silver Synthesis Temperature distribution Temperature profiles Vapors |
title | Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Quenching%20Gas%20Feeding%20on%20Silver%20Nanoparticle%20Synthesis%20by%20the%20Inductively%20Coupled%20Plasma%20Torch&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Cheon,%20Cheongbin&rft.date=2021-12-01&rft.volume=49&rft.issue=12&rft.spage=4022&rft.epage=4033&rft.pages=4022-4033&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3126788&rft_dat=%3Cproquest_RIE%3E2610988775%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610988775&rft_id=info:pmid/&rft_ieee_id=9625658&rfr_iscdi=true |