Effects of Quenching Gas Feeding on Silver Nanoparticle Synthesis by the Inductively Coupled Plasma Torch
In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2021-12, Vol.49 (12), p.4022-4033 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the synthesis of silver nanoparticles by a radio frequency inductively coupled plasma torch is numerically investigated. Gas temperature and velocity magnitude profiles have been obtained with a fluid model by changing the quenching gas flow, driving frequency, and coupled power. A combinational numerical scheme using the particle method for microparticles and the nodal method for nanoparticles has been merged to the fluid simulation results. The Lagrangian scheme calculates the dynamics of large particles, including the Coulomb force. In contrast, the Eulerian nodal method calculates the dynamics of small nanoparticles synthesized through the nucleation of supersaturated monomer vapors. The particle size distribution at the plasma torch outlet is controllable by adjusting the temperature profiles and the residence time to relocate the condensation, evaporation, and nucleation reactions with the variation of the control parameters. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2021.3126788 |