RMC: Reordering Marking and Coding for Fine-Grained Load Balancing in Data Centers

Data center networks typically adopt multi-rooted tree topologies to provide high bisection bandwidth. Various fine-grained load balancing schemes have been proposed to split flows across multiple paths. However, data center networks suffer from many uncertainties such as highly dynamic traffic. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2021-12, Vol.69 (12), p.8363-8374
Hauptverfasser: Zou, Shaojun, Huang, Jiawei, Wang, Jianxin, He, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data center networks typically adopt multi-rooted tree topologies to provide high bisection bandwidth. Various fine-grained load balancing schemes have been proposed to split flows across multiple paths. However, data center networks suffer from many uncertainties such as highly dynamic traffic. These uncertainties easily make network become asymmetric, resulting in significant packet reordering. Unfortunately, existing solutions passively deal with packet reordering based on a threshold and hardly adapt to asymmetric networks because of lacking the explicit reordering feedback. These solutions either fail to quickly respond to packet loss or cause unnecessary fast retransmission, which reduces link utilization and increases flow completion time. In this paper, we propose a fine-grained load balancing scheme RMC to eliminate the impact of packet reordering and handle uncertainties in asymmetric networks. To avoid unnecessary fast retransmission, the switch proactively identifies reordered packet according to local queue length and global path latency. Furthermore, we employ a coding technique with redundancy optimization to reduce long-tailed flow completion time under network asymmetry. Through a series of large-scale NS2 simulations and testbed experiments, we demonstrate that RMC effectively avoids unnecessary fast retransmission under different network scenarios and reduces flow completion time by up to 72% compared with state-of-the-art schemes.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2021.3118467