Optimized execution method for queries with materialized views: Design and implementation
A query application for On-Line Analytical Processing (OLAP) examines various kinds of data stored in a Data Warehouse (DW). There have been no systematic studies that look at the impact of query optimizations on performance and energy consumption in relational and NoSQL databases. Indeed, due to a...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.41 (6), p.6191-6205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A query application for On-Line Analytical Processing (OLAP) examines various kinds of data stored in a Data Warehouse (DW). There have been no systematic studies that look at the impact of query optimizations on performance and energy consumption in relational and NoSQL databases. Indeed, due to a lack of precise power calculation techniques in various databases and queries, the energy activity of several basic database operations is mostly unknown, as are the queries themselves, which are very complicated, extensive, and exploratory. As a result of the rapidly growing size of the DW system, query response times are regularly increasing. To improve decision-making performance, the response time of such queries should be as short as possible. To resolve these issues, multiple materialized views from individual database tables have been collected, and queries have been handled. Similarly, due to overall maintenance and storage expenses, as well as the selection of an optimal view set to increase the data storage facility’s efficacy, materializing all conceivable views is not viable. Thus, to overcome these issues, this paper proposed the method of energy-aware query optimization and processing, on materialized views using enhanced simulated annealing (EAQO-ESA). This work was carried out in four stages. First, a Simulated Annealing (SA) based meta-heuristic approach was used to pre-process the query and optimize the scheduling performance. Second, the optimal sets of views were materialized, resulting in enhanced query response efficiency. Third, the authors assessed the performance of the query execution time and computational complexity with and without optimization. Finally, based on processing time, efficiency, and computing cost, the system’s performance was validated and compared to the traditional technique. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-202821 |