New estimates on the size of \((\alpha,2\alpha)\)-Furstenberg sets

We use recent advances on the discretized sum-product problem to obtain new bounds on the Hausdorff dimension of planar \((\alpha,2\alpha)\)-Fursterberg sets. This provides a quantitative improvement to the \(2\alpha+\epsilon\) bound of Héra-Shmerkin-Yavicoli. In particular, we show that every \(1/2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Daniel Di Benedetto, Zahl, Joshua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use recent advances on the discretized sum-product problem to obtain new bounds on the Hausdorff dimension of planar \((\alpha,2\alpha)\)-Fursterberg sets. This provides a quantitative improvement to the \(2\alpha+\epsilon\) bound of Héra-Shmerkin-Yavicoli. In particular, we show that every \(1/2\)-Furstenberg set has dimension at least \(1 + 1/4536\).
ISSN:2331-8422