New estimates on the size of \((\alpha,2\alpha)\)-Furstenberg sets
We use recent advances on the discretized sum-product problem to obtain new bounds on the Hausdorff dimension of planar \((\alpha,2\alpha)\)-Fursterberg sets. This provides a quantitative improvement to the \(2\alpha+\epsilon\) bound of Héra-Shmerkin-Yavicoli. In particular, we show that every \(1/2...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use recent advances on the discretized sum-product problem to obtain new bounds on the Hausdorff dimension of planar \((\alpha,2\alpha)\)-Fursterberg sets. This provides a quantitative improvement to the \(2\alpha+\epsilon\) bound of Héra-Shmerkin-Yavicoli. In particular, we show that every \(1/2\)-Furstenberg set has dimension at least \(1 + 1/4536\). |
---|---|
ISSN: | 2331-8422 |