Control of Polymer Properties by Entanglement: A Review

Chain entanglement, either cohesional or topological, distinguishes polymers from other engineering materials. It impedes the movement of molecular segments and influences the polymer rheology, morphology, and mechanical properties. Although a high level of entanglement can increase the polymer toug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2021-12, Vol.306 (12), p.n/a
Hauptverfasser: Kong, De‐Chao, Yang, Ming‐Hao, Zhang, Xue‐Song, Du, Zu‐Chen, Fu, Qiang, Gao, Xue‐Qin, Gong, Jia‐Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chain entanglement, either cohesional or topological, distinguishes polymers from other engineering materials. It impedes the movement of molecular segments and influences the polymer rheology, morphology, and mechanical properties. Although a high level of entanglement can increase the polymer toughness, excessive entanglement should be avoided because it causes a high melt viscosity making the processing difficult. This review tended to elucidate the influence of entanglement on the polymer structure, determining the material properties and processability. A wide range of methods used to fine control the degrees of chain entanglement are summarized. The methods are applicable to polymers in solutions, melts, and condensed states with advantages and limitations discussed in detail. The authors also examined the effect of the entanglement on polymer crystallization—the mechanism remains a controversial issue. This review will provide general guidance to designing and processing polymer materials with desired properties via a rational route of controlling the chain entanglement. In this work, a wide range of methods used to fine control the degrees of chain entanglement are summarized. The methods are applicable to polymers in solutions, melts, and condensed states with advantages and limitations discussed in details. This review will provide general guidance to designing and processing polymer materials with desired properties via a rational route of controlling the chain entanglement.
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.202100536