Accelerated Convergence Interleaving Iterative Learning Control and Inverse Dynamics Identification

This work aims to quickly identify an FIR inverse dynamical model for linear time-invariant (LTI) systems. Various applications are enabled using the constructed inverse filter, as illustrated by an inversion-based iterative learning control (ILC) algorithm. With the help of interleaving inversion-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2022-01, Vol.30 (1), p.45-56
Hauptverfasser: Chen, Cheng-Wei, Tsao, Tsu-Chin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work aims to quickly identify an FIR inverse dynamical model for linear time-invariant (LTI) systems. Various applications are enabled using the constructed inverse filter, as illustrated by an inversion-based iterative learning control (ILC) algorithm. With the help of interleaving inversion-based ILC and ILC-based inverse dynamics identification, accelerated convergence is obtained. The proposed method removes the numerical instability issues in the calculation of an inverse model. Hence, it is shown more robust against measurement noises. Both simulation comparison and experimental results demonstrate the efficacy and advantages of the proposed strategy.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2021.3053561