Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation

The paper investigates an inverse problem for finding the order of the fractional derivative in the sense of Gerasimov–Caputo in the wave equation with an arbitrary positive self-adjoint operator having a discrete spectrum. By means of the classical Fourier method, it is proved that the value of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2021-11, Vol.110 (5-6), p.842-852
Hauptverfasser: Ashurov, R. R., Faiziev, Yu. É.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper investigates an inverse problem for finding the order of the fractional derivative in the sense of Gerasimov–Caputo in the wave equation with an arbitrary positive self-adjoint operator having a discrete spectrum. By means of the classical Fourier method, it is proved that the value of the projection of the solution onto some eigenfunction at a fixed time uniquely restores the order of the derivative. Several examples of the operator are discussed, including a linear system of fractional differential equations, fractional Sturm–Liouville operators, and many others.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434621110213