On Superspecial abelian surfaces over finite fields III
In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number | SSp 2 ( F q ) | of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field F q of even degree over the prime field F p . There it was assum...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2022-03, Vol.8 (1), Article 9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Research in number theory |
container_volume | 8 |
creator | Xue, Jiangwei Yu, Chia-Fu Zheng, Yuqiang |
description | In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number
|
SSp
2
(
F
q
)
|
of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field
F
q
of
even
degree over the prime field
F
p
. There it was assumed that certain commutative
Z
p
-orders satisfy an étale condition that excludes the primes
p
=
2
,
3
,
5
. We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of
|
SSp
2
(
F
q
)
|
in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works. |
doi_str_mv | 10.1007/s40993-021-00303-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610096561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610096561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a8e2d6ddca3ee3f689c2bf7af9a239e45e16fa1569d71a9c9dcf917c0091b8ef3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPEcnySbtHGXxT2FhD-o5ZNOJdKltTbaC395oBW-e3ju894b5MXYp4FoAlDdpDYiKgxQcQIHi1QlbSGUUR631afZaSg7CwDlbpXQAyF6tpZQLVu764mkaKaaRfOu6wu2pa11fpCkG5ykVwwfFIrR9e6Qs1DWpqOv6gp0F1yVa_eqSvdzfPW8e-Xb3UG9ut9wrgUfuKpKNaRrvFJEKpkIv96F0AZ1USGtNwgQntMGmFA49Nj6gKD0Ain1FQS3Z1bw7xuF9onS0h2GKfT5ppcnfo9FG5JScUz4OKUUKdoztm4ufVoD9ZmRnRjYzsj-MbJVLai6lHO5fKf5N_9P6An2vaM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610096561</pqid></control><display><type>article</type><title>On Superspecial abelian surfaces over finite fields III</title><source>SpringerLink Journals</source><creator>Xue, Jiangwei ; Yu, Chia-Fu ; Zheng, Yuqiang</creator><creatorcontrib>Xue, Jiangwei ; Yu, Chia-Fu ; Zheng, Yuqiang</creatorcontrib><description>In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number
|
SSp
2
(
F
q
)
|
of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field
F
q
of
even
degree over the prime field
F
p
. There it was assumed that certain commutative
Z
p
-orders satisfy an étale condition that excludes the primes
p
=
2
,
3
,
5
. We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of
|
SSp
2
(
F
q
)
|
in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-021-00303-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fields (mathematics) ; Isomorphism ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Number Theory ; Quaternions</subject><ispartof>Research in number theory, 2022-03, Vol.8 (1), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a8e2d6ddca3ee3f689c2bf7af9a239e45e16fa1569d71a9c9dcf917c0091b8ef3</citedby><cites>FETCH-LOGICAL-c319t-a8e2d6ddca3ee3f689c2bf7af9a239e45e16fa1569d71a9c9dcf917c0091b8ef3</cites><orcidid>0000-0002-0361-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-021-00303-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-021-00303-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xue, Jiangwei</creatorcontrib><creatorcontrib>Yu, Chia-Fu</creatorcontrib><creatorcontrib>Zheng, Yuqiang</creatorcontrib><title>On Superspecial abelian surfaces over finite fields III</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number
|
SSp
2
(
F
q
)
|
of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field
F
q
of
even
degree over the prime field
F
p
. There it was assumed that certain commutative
Z
p
-orders satisfy an étale condition that excludes the primes
p
=
2
,
3
,
5
. We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of
|
SSp
2
(
F
q
)
|
in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works.</description><subject>Fields (mathematics)</subject><subject>Isomorphism</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Quaternions</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwVPEcnySbtHGXxT2FhD-o5ZNOJdKltTbaC395oBW-e3ju894b5MXYp4FoAlDdpDYiKgxQcQIHi1QlbSGUUR631afZaSg7CwDlbpXQAyF6tpZQLVu764mkaKaaRfOu6wu2pa11fpCkG5ykVwwfFIrR9e6Qs1DWpqOv6gp0F1yVa_eqSvdzfPW8e-Xb3UG9ut9wrgUfuKpKNaRrvFJEKpkIv96F0AZ1USGtNwgQntMGmFA49Nj6gKD0Ain1FQS3Z1bw7xuF9onS0h2GKfT5ppcnfo9FG5JScUz4OKUUKdoztm4ufVoD9ZmRnRjYzsj-MbJVLai6lHO5fKf5N_9P6An2vaM8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Xue, Jiangwei</creator><creator>Yu, Chia-Fu</creator><creator>Zheng, Yuqiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0361-8135</orcidid></search><sort><creationdate>20220301</creationdate><title>On Superspecial abelian surfaces over finite fields III</title><author>Xue, Jiangwei ; Yu, Chia-Fu ; Zheng, Yuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a8e2d6ddca3ee3f689c2bf7af9a239e45e16fa1569d71a9c9dcf917c0091b8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fields (mathematics)</topic><topic>Isomorphism</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Quaternions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Jiangwei</creatorcontrib><creatorcontrib>Yu, Chia-Fu</creatorcontrib><creatorcontrib>Zheng, Yuqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Jiangwei</au><au>Yu, Chia-Fu</au><au>Zheng, Yuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Superspecial abelian surfaces over finite fields III</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><artnum>9</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number
|
SSp
2
(
F
q
)
|
of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field
F
q
of
even
degree over the prime field
F
p
. There it was assumed that certain commutative
Z
p
-orders satisfy an étale condition that excludes the primes
p
=
2
,
3
,
5
. We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of
|
SSp
2
(
F
q
)
|
in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-021-00303-8</doi><orcidid>https://orcid.org/0000-0002-0361-8135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0160 |
ispartof | Research in number theory, 2022-03, Vol.8 (1), Article 9 |
issn | 2522-0160 2363-9555 |
language | eng |
recordid | cdi_proquest_journals_2610096561 |
source | SpringerLink Journals |
subjects | Fields (mathematics) Isomorphism Lattices (mathematics) Mathematics Mathematics and Statistics Number Theory Quaternions |
title | On Superspecial abelian surfaces over finite fields III |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Superspecial%20abelian%20surfaces%20over%20finite%20fields%20III&rft.jtitle=Research%20in%20number%20theory&rft.au=Xue,%20Jiangwei&rft.date=2022-03-01&rft.volume=8&rft.issue=1&rft.artnum=9&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-021-00303-8&rft_dat=%3Cproquest_cross%3E2610096561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610096561&rft_id=info:pmid/&rfr_iscdi=true |