On Superspecial abelian surfaces over finite fields III
In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number | SSp 2 ( F q ) | of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field F q of even degree over the prime field F p . There it was assum...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2022-03, Vol.8 (1), Article 9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number
|
SSp
2
(
F
q
)
|
of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field
F
q
of
even
degree over the prime field
F
p
. There it was assumed that certain commutative
Z
p
-orders satisfy an étale condition that excludes the primes
p
=
2
,
3
,
5
. We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of
|
SSp
2
(
F
q
)
|
in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-021-00303-8 |