On Superspecial abelian surfaces over finite fields III

In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number | SSp 2 ( F q ) | of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field F q of even degree over the prime field F p . There it was assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2022-03, Vol.8 (1), Article 9
Hauptverfasser: Xue, Jiangwei, Yu, Chia-Fu, Zheng, Yuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and the first two current authors computed explicitly the number | SSp 2 ( F q ) | of isomorphism classes of superspecial abelian surfaces over an arbitrary finite field F q of even degree over the prime field F p . There it was assumed that certain commutative Z p -orders satisfy an étale condition that excludes the primes p = 2 , 3 , 5 . We treat these remaining primes in the present paper, where the computations are more involved because of the ramification. This completes the calculation of | SSp 2 ( F q ) | in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in (Doc Math 21:1607–1643, 2016). To complete the proof of our main theorem, we give a classification of lattices over local quaternion Bass orders, which is a new input to our previous works.
ISSN:2522-0160
2363-9555
DOI:10.1007/s40993-021-00303-8