Fabrication of inversion p-channel MOSFET with a nitrogen-doped diamond body
A normally-off inversion p-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a nitrogen (N)-doped diamond body deposited using microwave plasma-enhanced chemical vapor deposition (MPECVD) was fabricated. The MOSFET exhibited a drain current density of −1.7 mA/mm. Thus far, this...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-12, Vol.119 (24) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A normally-off inversion p-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a nitrogen (N)-doped diamond body deposited using microwave plasma-enhanced chemical vapor deposition (MPECVD) was fabricated. The MOSFET exhibited a drain current density of −1.7 mA/mm. Thus far, this value is similar to the device performance of the inversion p-channel MOSFET fabricated using a phosphorus (P)-doped n-type diamond body. The N2 used for N-doping is safer than the PH3 used for P-doping; moreover, the doping concentration is highly controllable. Because the MOSFET, which is a classical electronic device, is driven by a gate voltage, smooth functioning was possible even at a deep donor level. The observed characteristics of the classic MOSFET operating via an N-doped body are crucial for the development of diamond power devices. In this paper, we discuss the significance of the N-doped diamond body and electrical characteristics of the inversion p-channel MOSFET fabricated using an N-doped diamond body. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0075964 |