The onset of copper-ion mobility and the electronic transition in the kesterite Cu2ZnGeSe4

Kesterite-related phases have attracted considerable interest as earth-abundant photovoltaic and thermoelectric materials. For the kesterite Cu2ZnGeSe4, we have established a direct link between anomalies in the temperature dependence of transport properties and an order-disorder transition. Powder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-12, Vol.9 (48), p.27493-27502
Hauptverfasser: Mangelis, Panagiotis, Paz Vaqueiro, Smith, Ronald I, Powell, Anthony V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kesterite-related phases have attracted considerable interest as earth-abundant photovoltaic and thermoelectric materials. For the kesterite Cu2ZnGeSe4, we have established a direct link between anomalies in the temperature dependence of transport properties and an order-disorder transition. Powder neutron diffraction as a function of temperature reveals an order-disorder transition at 473 K, involving disordering of copper and zinc cations over three crystallographic positions. Vacancies are simultaneously created on the copper-ion sub-lattice, indicative of the concomitant onset of copper-ion mobility. Differential scanning calorimetry data show a weak thermal signature in this temperature region, typical of a second-order phase transition, which is consistent with the absence of anomalies in the temperature dependence of the unit cell volume. The partial melting of the copper-ion sub-lattice induces a transition in the electrical-transport properties. The changes in electrical resistivity and Seebeck coefficient suggest this involves a transition from a conventional, activated semiconductor, to a degenerate semiconductor. The entry of an increasing fraction of the copper-ion sub-lattice into a liquid-like state is reflected in a reduction in thermal conductivity above 473 K. The order-disorder phase transition identified here has consequences for the performance of photovoltaic and thermoelectric devices based on kesterites.
ISSN:2050-7488
2050-7496
DOI:10.1039/d1ta08642a