Positive Solutions for an Iterative System of Nonlinear Elliptic Equations
This paper deals with the existence of positive radial solutions to the iterative system of nonlinear elliptic equations of the form ▵ z j + ( N - 2 ) 2 r 0 2 N - 2 | x | 2 N - 2 z j + φ ( | x | ) g j ( z j + 1 ) = 0 , R 1 < | x | < R 2 , where j ∈ { 1 , 2 , 3 , · · · , ℓ } , z 1 = z ℓ + 1 , ▵...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022, Vol.45 (1), p.245-272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the existence of positive radial solutions to the iterative system of nonlinear elliptic equations of the form
▵
z
j
+
(
N
-
2
)
2
r
0
2
N
-
2
|
x
|
2
N
-
2
z
j
+
φ
(
|
x
|
)
g
j
(
z
j
+
1
)
=
0
,
R
1
<
|
x
|
<
R
2
,
where
j
∈
{
1
,
2
,
3
,
·
·
·
,
ℓ
}
,
z
1
=
z
ℓ
+
1
,
▵
z
=
div
(
▿
z
)
,
N
>
2
,
0
<
r
0
<
π
/
2
,
φ
=
∏
i
=
1
n
φ
i
,
each
φ
i
:
(
r
0
,
+
∞
)
→
(
0
,
+
∞
)
is continuous,
r
N
-
1
φ
is integrable, and
g
j
:
[
0
,
+
∞
)
→
R
is continuous, by an application of various fixed point theorems in a Banach space. Further, we also establish uniqueness of the solution for the addressed system by using Rus’s theorem in a complete metric space. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-021-01183-y |