Permutation Groups and Set-Orbits on the Power Set
A permutation group G acting on a set Ω induces a permutation group on the power set P ( Ω ) (the set of all subsets of Ω ). Let G be a finite permutation group of degree n and s ( G ) denote the number of orbits of G on P ( Ω ) . It is an interesting problem to determine the lower bound inf log 2 s...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022, Vol.45 (1), p.177-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A permutation group
G
acting on a set
Ω
induces a permutation group on the power set
P
(
Ω
)
(the set of all subsets of
Ω
). Let
G
be a finite permutation group of degree
n
and
s
(
G
) denote the number of orbits of
G
on
P
(
Ω
)
. It is an interesting problem to determine the lower bound
inf
log
2
s
(
G
)
n
over all groups
G
that do not contain any alternating group
A
ℓ
(where
ℓ
>
t
for some fixed
t
⩾
4
)
as a composition factor. The second author obtained the answer for the case
t
=
4
in Yang (J Algebra Appl 19:2150005, 2020). In this paper, we continue this investigation and study the cases when
t
⩾
5
, and give the explicit lower bounds
inf
log
2
s
(
G
)
n
for each positive integer
5
⩽
t
⩽
166
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-021-01188-7 |