Permutation Groups and Set-Orbits on the Power Set

A permutation group G acting on a set Ω induces a permutation group on the power set P ( Ω ) (the set of all subsets of Ω ). Let G be a finite permutation group of degree n and s ( G ) denote the number of orbits of G on P ( Ω ) . It is an interesting problem to determine the lower bound inf log 2 s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2022, Vol.45 (1), p.177-199
Hauptverfasser: Yan, Yanxiong, Yang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A permutation group G acting on a set Ω induces a permutation group on the power set P ( Ω ) (the set of all subsets of Ω ). Let G be a finite permutation group of degree n and s ( G ) denote the number of orbits of G on P ( Ω ) . It is an interesting problem to determine the lower bound inf log 2 s ( G ) n over all groups G that do not contain any alternating group A ℓ (where ℓ > t for some fixed t ⩾ 4 ) as a composition factor. The second author obtained the answer for the case t = 4 in Yang (J Algebra Appl 19:2150005, 2020). In this paper, we continue this investigation and study the cases when t ⩾ 5 , and give the explicit lower bounds inf log 2 s ( G ) n for each positive integer 5 ⩽ t ⩽ 166 .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-021-01188-7