One dimensional weighted Ricci curvature and displacement convexity of entropies
In the present paper, we prove that a lower bound on the 1‐weighted Ricci curvature is equivalent to a convexity of entropies on the Wasserstein space. Based on such characterization, we provide some interpolation inequalities such as the Prékopa–Leindler inequality, the Borel–Branscamp–Lieb inequal...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2021-10, Vol.294 (10), p.1950-1967 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we prove that a lower bound on the 1‐weighted Ricci curvature is equivalent to a convexity of entropies on the Wasserstein space. Based on such characterization, we provide some interpolation inequalities such as the Prékopa–Leindler inequality, the Borel–Branscamp–Lieb inequality, and the Brunn–Minkowski inequality under the curvature bound. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201900143 |