One dimensional weighted Ricci curvature and displacement convexity of entropies

In the present paper, we prove that a lower bound on the 1‐weighted Ricci curvature is equivalent to a convexity of entropies on the Wasserstein space. Based on such characterization, we provide some interpolation inequalities such as the Prékopa–Leindler inequality, the Borel–Branscamp–Lieb inequal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2021-10, Vol.294 (10), p.1950-1967
1. Verfasser: Sakurai, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we prove that a lower bound on the 1‐weighted Ricci curvature is equivalent to a convexity of entropies on the Wasserstein space. Based on such characterization, we provide some interpolation inequalities such as the Prékopa–Leindler inequality, the Borel–Branscamp–Lieb inequality, and the Brunn–Minkowski inequality under the curvature bound.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201900143