Automating Common Data Integration for Improved Data-Driven Decision-Support System in Industrial Construction
AbstractTo achieve meaningful results, data-driven decision-support systems in construction require the integration of fragmented data from multiple standalone databases. In practice, a manual brute-force approach is often the only available means of integrating structured, yet semantically-ambiguou...
Gespeichert in:
Veröffentlicht in: | Journal of computing in civil engineering 2022-03, Vol.36 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractTo achieve meaningful results, data-driven decision-support systems in construction require the integration of fragmented data from multiple standalone databases. In practice, a manual brute-force approach is often the only available means of integrating structured, yet semantically-ambiguous, construction data. Two common data integration challenges include the identification of (1) key strings (i.e., product identification) partially shared between two data sources; and (2) relationships (overlap, included, or outside) between two 3D object lists based on coordinates. This research has developed a framework that includes two generic solutions to the identified semantic mapping challenges. The proposed framework automatically integrates fragmented and incompatible data (exhibiting similar semantic mapping challenges) from various sources into a tidy format for input into a diverse range of industrial construction applications. Verification and functionality of the framework were confirmed using both artificial data and a real case study of a large oil-and-gas project. The ability of the proposed data integration functions and framework to automate otherwise manual data integration processes was demonstrated. Results of this study are expected to enhance real-time information flow, improve data quality, and promote the use of fragmented data for critical decision support in practice. |
---|---|
ISSN: | 0887-3801 1943-5487 |
DOI: | 10.1061/(ASCE)CP.1943-5487.0001001 |