Stability of constant steady states of a chemotaxis model
The Cauchy problem for the parabolic–elliptic Keller–Segel system in the whole n -dimensional space is studied. For this model, every constant A ∈ R is a stationary solution. The main goal of this work is to show that A < 1 is a stable steady state while A > 1 is unstable. Uniformly local Lebe...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2021-12, Vol.21 (4), p.4873-4896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Cauchy problem for the parabolic–elliptic Keller–Segel system in the whole
n
-dimensional space is studied. For this model, every constant
A
∈
R
is a stationary solution. The main goal of this work is to show that
A
<
1
is a stable steady state while
A
>
1
is unstable. Uniformly local Lebesgue spaces are used in order to deal with solutions that do not decay at spatial variable on the unbounded domain. |
---|---|
ISSN: | 1424-3199 1424-3202 |
DOI: | 10.1007/s00028-021-00735-w |