Stability of constant steady states of a chemotaxis model

The Cauchy problem for the parabolic–elliptic Keller–Segel system in the whole n -dimensional space is studied. For this model, every constant A ∈ R is a stationary solution. The main goal of this work is to show that A < 1 is a stable steady state while A > 1 is unstable. Uniformly local Lebe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2021-12, Vol.21 (4), p.4873-4896
Hauptverfasser: Cygan, Szymon, Karch, Grzegorz, Krawczyk, Krzysztof, Wakui, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cauchy problem for the parabolic–elliptic Keller–Segel system in the whole n -dimensional space is studied. For this model, every constant A ∈ R is a stationary solution. The main goal of this work is to show that A < 1 is a stable steady state while A > 1 is unstable. Uniformly local Lebesgue spaces are used in order to deal with solutions that do not decay at spatial variable on the unbounded domain.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-021-00735-w