Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics

In this paper, the nanogrinding process of single-crystal silicon carbide is studied with molecular dynamics. By changing the grinding depth, we analyze the atomic Y direction displacement, crystal defect, force, von Mises stress and the wear of abrasive. We found that with the increase in grinding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2022, Vol.128 (1), Article 34
Hauptverfasser: Liu, Yingli, Ji, Yanqiang, Dong, Liguang, Xie, Hongcai, Song, Juncheng, Li, Junye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Liu, Yingli
Ji, Yanqiang
Dong, Liguang
Xie, Hongcai
Song, Juncheng
Li, Junye
description In this paper, the nanogrinding process of single-crystal silicon carbide is studied with molecular dynamics. By changing the grinding depth, we analyze the atomic Y direction displacement, crystal defect, force, von Mises stress and the wear of abrasive. We found that with the increase in grinding depth, the atomic Y direction displacement, crystal defect, force and the wear of abrasive are gradually increasing. When the grinding depth is 3 nm, serious plastic deformation occurs. The deformation of the substrate extends in the Z direction. In addition, the maximum value of von Mises stress is fluctuating. These results provide some theoretical support for the study of mechanical properties of single-crystal silicon carbide.
doi_str_mv 10.1007/s00339-021-05169-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609384976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609384976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4e53d3cde71c1cbfac0d218dd9181a203646a726a1f72afdce4460bb0541fd7b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaWaylFKtUBC8rEMml3ZKm9RkKvTtnTqiO8_mLM73_wc-hK4p3FKA6q4AcK4IMEpgQqUi7ASNqOCMgORwikagREVqruQ5uihlDf0IxkboZRaCtx1OAS9zG10bl9j5XbcqOEX82k5xNDH9nhq_Mp9tyrgxxbsjsk0bb_cbk7E7RLNtbblEZ8Fsir_62WP0_jB7m87J4vnxaXq_IJZT1RHhJ9xx63xFLbVNMBYco7VzitbUMOBSSFMxaWiomAnOeiEkNA1MBA2uavgY3Qy9u5w-9r50ep32OfYvNZOgeC1UJXuKDZTNqZTsg97ldmvyQVPQR3d6cKd7d_rbnWZ9iA-h0sNx6fNf9T-pLy4jcgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609384976</pqid></control><display><type>article</type><title>Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Yingli ; Ji, Yanqiang ; Dong, Liguang ; Xie, Hongcai ; Song, Juncheng ; Li, Junye</creator><creatorcontrib>Liu, Yingli ; Ji, Yanqiang ; Dong, Liguang ; Xie, Hongcai ; Song, Juncheng ; Li, Junye</creatorcontrib><description>In this paper, the nanogrinding process of single-crystal silicon carbide is studied with molecular dynamics. By changing the grinding depth, we analyze the atomic Y direction displacement, crystal defect, force, von Mises stress and the wear of abrasive. We found that with the increase in grinding depth, the atomic Y direction displacement, crystal defect, force and the wear of abrasive are gradually increasing. When the grinding depth is 3 nm, serious plastic deformation occurs. The deformation of the substrate extends in the Z direction. In addition, the maximum value of von Mises stress is fluctuating. These results provide some theoretical support for the study of mechanical properties of single-crystal silicon carbide.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05169-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abrasive wear ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crystal defects ; Grinding ; Machines ; Manufacturing ; Materials science ; Mechanical properties ; Molecular dynamics ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Plastic deformation ; Processes ; Silicon carbide ; Single crystals ; Substrates ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022, Vol.128 (1), Article 34</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4e53d3cde71c1cbfac0d218dd9181a203646a726a1f72afdce4460bb0541fd7b3</citedby><cites>FETCH-LOGICAL-c319t-4e53d3cde71c1cbfac0d218dd9181a203646a726a1f72afdce4460bb0541fd7b3</cites><orcidid>0000-0001-9417-9897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05169-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05169-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Yingli</creatorcontrib><creatorcontrib>Ji, Yanqiang</creatorcontrib><creatorcontrib>Dong, Liguang</creatorcontrib><creatorcontrib>Xie, Hongcai</creatorcontrib><creatorcontrib>Song, Juncheng</creatorcontrib><creatorcontrib>Li, Junye</creatorcontrib><title>Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this paper, the nanogrinding process of single-crystal silicon carbide is studied with molecular dynamics. By changing the grinding depth, we analyze the atomic Y direction displacement, crystal defect, force, von Mises stress and the wear of abrasive. We found that with the increase in grinding depth, the atomic Y direction displacement, crystal defect, force and the wear of abrasive are gradually increasing. When the grinding depth is 3 nm, serious plastic deformation occurs. The deformation of the substrate extends in the Z direction. In addition, the maximum value of von Mises stress is fluctuating. These results provide some theoretical support for the study of mechanical properties of single-crystal silicon carbide.</description><subject>Abrasive wear</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Grinding</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plastic deformation</subject><subject>Processes</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaWaylFKtUBC8rEMml3ZKm9RkKvTtnTqiO8_mLM73_wc-hK4p3FKA6q4AcK4IMEpgQqUi7ASNqOCMgORwikagREVqruQ5uihlDf0IxkboZRaCtx1OAS9zG10bl9j5XbcqOEX82k5xNDH9nhq_Mp9tyrgxxbsjsk0bb_cbk7E7RLNtbblEZ8Fsir_62WP0_jB7m87J4vnxaXq_IJZT1RHhJ9xx63xFLbVNMBYco7VzitbUMOBSSFMxaWiomAnOeiEkNA1MBA2uavgY3Qy9u5w-9r50ep32OfYvNZOgeC1UJXuKDZTNqZTsg97ldmvyQVPQR3d6cKd7d_rbnWZ9iA-h0sNx6fNf9T-pLy4jcgM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Yingli</creator><creator>Ji, Yanqiang</creator><creator>Dong, Liguang</creator><creator>Xie, Hongcai</creator><creator>Song, Juncheng</creator><creator>Li, Junye</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9417-9897</orcidid></search><sort><creationdate>2022</creationdate><title>Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics</title><author>Liu, Yingli ; Ji, Yanqiang ; Dong, Liguang ; Xie, Hongcai ; Song, Juncheng ; Li, Junye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4e53d3cde71c1cbfac0d218dd9181a203646a726a1f72afdce4460bb0541fd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abrasive wear</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Grinding</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plastic deformation</topic><topic>Processes</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yingli</creatorcontrib><creatorcontrib>Ji, Yanqiang</creatorcontrib><creatorcontrib>Dong, Liguang</creatorcontrib><creatorcontrib>Xie, Hongcai</creatorcontrib><creatorcontrib>Song, Juncheng</creatorcontrib><creatorcontrib>Li, Junye</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yingli</au><au>Ji, Yanqiang</au><au>Dong, Liguang</au><au>Xie, Hongcai</au><au>Song, Juncheng</au><au>Li, Junye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022</date><risdate>2022</risdate><volume>128</volume><issue>1</issue><artnum>34</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this paper, the nanogrinding process of single-crystal silicon carbide is studied with molecular dynamics. By changing the grinding depth, we analyze the atomic Y direction displacement, crystal defect, force, von Mises stress and the wear of abrasive. We found that with the increase in grinding depth, the atomic Y direction displacement, crystal defect, force and the wear of abrasive are gradually increasing. When the grinding depth is 3 nm, serious plastic deformation occurs. The deformation of the substrate extends in the Z direction. In addition, the maximum value of von Mises stress is fluctuating. These results provide some theoretical support for the study of mechanical properties of single-crystal silicon carbide.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05169-2</doi><orcidid>https://orcid.org/0000-0001-9417-9897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022, Vol.128 (1), Article 34
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2609384976
source SpringerLink Journals - AutoHoldings
subjects Abrasive wear
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Crystal defects
Grinding
Machines
Manufacturing
Materials science
Mechanical properties
Molecular dynamics
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Plastic deformation
Processes
Silicon carbide
Single crystals
Substrates
Surfaces and Interfaces
Thin Films
title Effect of grinding depths on SiC nanogrinding behavior based on molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20grinding%20depths%20on%20SiC%20nanogrinding%20behavior%20based%20on%20molecular%20dynamics&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Liu,%20Yingli&rft.date=2022&rft.volume=128&rft.issue=1&rft.artnum=34&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05169-2&rft_dat=%3Cproquest_cross%3E2609384976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609384976&rft_id=info:pmid/&rfr_iscdi=true