Mean-Based Breakpoint Selection on Circular Histogram
Circular histogram represents the statistical distribution of circular data; the H component histogram of HSI color model is a typical example of the circular histogram. When using H component to segment color image, a feasible way is to transform the circular histogram into a linear histogram, and...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-12, Vol.2021, p.1-13, Article 5966463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circular histogram represents the statistical distribution of circular data; the H component histogram of HSI color model is a typical example of the circular histogram. When using H component to segment color image, a feasible way is to transform the circular histogram into a linear histogram, and then, the mature gray image thresholding methods are used on the linear histogram to select the threshold value. Thus, the reasonable selection of the breakpoint on circular histogram to linearize the circular histogram is the key. In this paper, based on the angles mean on circular histogram and the line mean on linear histogram, a simple breakpoint selection criterion is proposed, and the suitable range of this method is analyzed. Compared with the existing breakpoint selection criteria based on Lorenz curve and cumulative distribution entropy, the proposed method has the advantages of simple expression and less calculation and does not depend on the direction of rotation. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/5966463 |