On the Navier–Stokes equations on surfaces

We consider the motion of an incompressible viscous fluid that completely covers a smooth, compact and embedded hypersurface Σ without boundary and flows along Σ . Local-in-time well-posedness is established in the framework of L p - L q -maximal regularity. We characterize the set of equilibria as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2021-09, Vol.21 (3), p.3153-3179
Hauptverfasser: Prüss, Jan, Simonett, Gieri, Wilke, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the motion of an incompressible viscous fluid that completely covers a smooth, compact and embedded hypersurface Σ without boundary and flows along Σ . Local-in-time well-posedness is established in the framework of L p - L q -maximal regularity. We characterize the set of equilibria as the set of all Killing vector fields on Σ , and we show that each equilibrium on Σ is stable. Moreover, it is shown that any solution starting close to an equilibrium exists globally and converges at an exponential rate to a (possibly different) equilibrium as time tends to infinity.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-020-00648-0